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1. Introduction

The whole objective of the project is to develop and to deploy tools to support the monitoring activities in an
intervention caused by a large-scale disaster, with a particular focus on the software agents and the issues
that their development involve. The RoboCup-Rescue simulator is used as a main development
environment. Particular attention is given to analysing the information fusion problem, which concerns the
way information acquired by different sources are gathered together and organised in a coherent manner.

In this document we report on the results of this one-year project, by addressing the 3 objectives set in the
technical plan:

Objective 1: Setting the hardware and software systems necessary to use the RoboCup-Rescue simulator.

Objective 2: Studying and developing both information fusion techniques, knowledge modelling techniques,
and agent architectures.

Objective 3: Evaluating the adaptability of the RoboCup-Rescue simulator to any intervention area.

The development of the project has been carried out according to the plan. In particular, we can assess that
Objective 1 has been fully achieved, while the basis for an effective solution to the information fusion task
has been established in Objective 2 and the structure for the design and implementation of the prototype
foreseen in Objective 3 has been designed and partially implemented. We have prepared a set of separate
documents that describe in detail the results achieved in the project and that are integral part of this report.
Below we present a summary of the results achieved for each objective, by providing referenced to the
attached documents, we then discuss the prospects for future research and exploitation of the results
achieved, and finally we provide a list of the recent publications of the project proponents that are related to
the research field of the project and a reference list of the attached documents. An overview of the project
has been presented in F. D’Agostino, A. Farinelli, G. Grisetti, L. locchi, D. Nardi, Monitoring and information
fusion for search and rescue operations in large-scale disasters, Proc. of Information Fusion (IF 2002),
Annapolis, July 2002 (see attached document 5).

2. Results of the project
Objective 1: Setting the hardware and software systems necessary to use the RoboCup-Rescue simulator.

The RoboCup-Rescue simulator has been first installed on a local network of PCs. In order to improve the
level of performance, a set-up has been made also on a high speed network of 4 interconnected computers
(Myrinet), that has been installed in our Lab.

In Structure and working of the rescue simulator, A. Farinelli, G. Grisetti, L. locchi, D. Nardi, M. Salerno (see
document 1 of the 6 months Interim Report), the structure of the RoboCup Rescue simulator and details of
the installation at DIS are described.

Objective 2: Studying and developing both information fusion techniques, knowledge modelling techniques,
and agent architectures.

The results related to this objective can be summarized as follows:

1) Survey of the literature on information fusion, with a special focus on the use of agent-based
approaches, that we consider well-suited for the rescue application domain.

2) Design and implementation of architecture and agent models for situation assessment in a rescue
simulation domain.

In Information fusion, A. Farinelli, G. Grisetti, L. locchi, D. Nardi, M. Salerno (see attached document 2 of the
6 months interim report), we first discuss various characterizations of the field of Information Fusion. We then
address the application domains where information fusion approaches have been developed and the most
important techniques and architectures deployed in such approaches. In particular, we distinguish three
architecture levels where the fusion of information can take place: signal, feature and symbol level. While



there are few approaches that can be classified as belonging to the symbolic level, we emphasize that the
problem of “situation understanding”, which is central in a rescue scenario, can be addressed only by
addressing information fusion at all levels. We then describe, in more detail, the approaches to information
fusion that deploy agent technology, which are of specific interest to the rescue domain. The document is
concluded by a first attempt to model, at an abstract level, a rescue domain, highlighting similarities and
differences with the approaches reported in the literature.

In Architecture and agent modelling for situation assessment, F. D’Agostino, A. Farinelli, G. Grisetti, L.
locchi, D. Nardi, (see attached document 3), we address the problem of situation assessment in a scenario,
which is dynamically and unpredictably changing, such as a rescue scenario. In this document we present
the general approach, while its instantiation to the RoboCup Rescue domain is described in the attached
document 4. The architecture of our multi agent system combines the requirements of deliberation and
reactivity, that have been pursued by through the design of so-called cognitive agents, together with the
ability to coordinate the behaviour of several agents that contribute to the assessment of the situation, while
fulfilling their mission. More specifically, under the assumption that the agent can communicate according to
some structure, possibly referring to different organizations, we model the basic features that characterize
the behavior of an agent: the plans that allow the agent to accomplish its task, its information fusion policies,
its capability to cooperate with other agents. The document is structured as follows. We first address the
architecture of the agents, by characterizing their capabilities to acquire and integrate information coming
from several sources, as well as their ability of accomplishing long term plans, and to react to the situation as
perceived. We then present the basic feature of the Agent Development Kit (ADK), which provides a basis
for the design of agents that are capable of executing plans, combine information coming from several
sources and cooperate in order to accomplish a common goal. Subsequently, we present the main features
of the implementation of our ADK, specifically addressing the plan specification and the information fusion
component.

Objective 3: Evaluating the adaptability of the RoboCup-Rescue simulator to any intervention area.

With respect to this objective, we have devised and implemented two extensions of the RoboCup simulator,
the GIS editor and the ADK, that make it suitable for experimentation in a scenario built from real data
concerning the earthquake in Marche and Umbria in 1997 (kindly provided by the VVF of the Italian Ministry
of Internal Affairs). Using these tools, we have reconstructed a simulation scenario and we have developed a
simple model of the rescue agents based on the ADK.

In Adaptability of the Rescue Simulator F. D’Agostino, A. Farinelli, G. Grisetti, L. locchi, D. Nardi, (see
attached document 4, which is a revised and extended version of document 3 of the 6 months interim

report), we describe the results achieved in objective 3, by describing the tools implemented for facilitating
the use of the RoboCup simulator and the models built through them.

The first tool is a GIS editor, that enables the use of the simulator in domains that are taken from data
concerning real world scenarios. The GIS editor allows one to build (or complete, depending on the
availability and the detail of geographic data on the chosen scenario) a map of the rescue domain. The editor
outputs the map in a format that is suitable for use in the rescue simulator.

The second tool is the specialization of the cognitive Agent Development Kit (ADK) to the RoboCup Rescue
Simulator. The ADK enables the programming of a simulation scenario with a pre-defined agent structure, by
making it easy to handle situation information at various representation levels, by providing built-in tools for
information fusion and action planning, as well as to accomodate different communication structures and
coordination protocols.

The GIS editor helped us in reconstructing a simulation scenario of the city of Foligno related to the
earthquake of Marche and Umbria in 1997. In addition, we have applied the ADK to design some elementary
agent model for the rescue agents: fire brigades, ambulances and police force, as well as their operation
centers; we also devised a simple model of civilians by allowing them to attempt to reach the closest refugee
structure and run some test experiments. We finally discuss some preliminary ideas for carrying out
systematic evaluation of situation assessment strategies, as well as more comprehensive evaluation criteria
taking into account the overall performance of the system.



3. Prospects for future research and project exploitation

As shown above, the objectives of the project have been successfully achieved. This not only provides
evidence that the proposed approach has proved successful, but also that there are interesting
developments that can be foreseen. We first address the topics for future research and then briefly discuss
the exploitation of the project results.

A major outcome of the project is the platform for evaluating the strategies for operating in a multi agent
scenario where a major task is acquiring and maintaining a coherent representation of the world in the face
of a partially known and rapidly evolving scenario and with respect to achieving specific goals within such
scenario. In particular, the following are issues that may be effectively addressed in a new research project:

- metrics for evaluation of situation assessment and situation awareness.
- analysis of strategies for situation assessment
- integration with (electronic) sensory input and robotic agents.

The project is a first step towards a medium term goal of providing tools for supporting crisis management, to
be deployed before hand, by providing both for qualitative and for quantitative analyses of the emergency
plans and to be used during the emergency supporting monitoring and situation assessment. In this respect,
the results of the project as well as some of the techniques can be exploited within the PRET 5 years
program (Prof. Llinas, SUNY Buffalo).

The project can also be seen as a contribution to the goal of monitoring and coordinating the activities of a
group of agents that can be human, human-operated and fully autonomous, which are operating in an
emergency scenario in urban areas. In this respect the proposed solution, and, more generally, the research
should be generalized in two respects:

- integration with sensor infrastructure
- type of emergency/operation

4. Publications

Below we list the publications appeared since the beginning of the project that are related to the field of the
present project.

G. Grisetti, L. locchi, D. Nardi, Global Hough Localization for Mobile Robots in Polygonal Environments. In
Proc. of International Conference on Robotics and Automation (ICRA2002).

L. locchi, D. Nardi, Hough localization for mobile robots in polygonal environments. To appear in Robotics
and Autonomous Systems.

C. Castelpietra, A. Guidotti, L. locchi, D. Nardi, R. Rosati, Design and implementation of cognitive soccer
robots. Proc. of RoboCup Symposium 2001.

C. Candea, H. Hu, L. locchi, D. Nardi, M. Piaggio, Coordination in multi-agent RoboCup teams, Robotics and
Autonomous Systems, 36, pp. 67-86, 2001.
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Adaptability of the RoboCup-Rescue Simulator

F. D’Agostino, A. Farinelli, G. Grisetti, L. Iocchi, and D. Nardi

Dipartimento di Informatica e Sistemistica
Universitd di Roma “La Sapienza”
Via Salaria 113 - 00198 Roma, Italy

{fdagosti,last_name}@dis.uniromal.it,

Abstract. In this document we describe the tools we developed to aid
the agent designer defining agents and to set up the simulation environ-
ment of a real disaster in the RoboCup-Rescue simulator. In addition,
we discuss the use of these tools in designing a real rescue scenario.

The tools include the GIS editor, that allows one to build a map of the
Rescue domain and the Agent Development Kit (ADK) for the Rescue
domain, that is a specialization of the general ADK described in [3].
The GIS editor is a graphical tools supporting the specifications of a
Rescue map by relying on geographic data of the choosen scenario when
available. The editor outputs the map in a format that is suitable for use
in the Rescue simulator.

The ADK is a tool suite supporting the design of agents. At this stage
it allows to draw agent plans, using the Plan Assistant interactive tool,
and to specify in a relatively easy way the other basic features of the
agents in the Rescue domain, in particular, the primitive actions and the
fusion strategy.

The GIS editor has been used in reconstructing a simulation scenario
of the city of Foligno related to the earthquake of Marche and Umbria
in 1997. In addition, we applied the ADK to design some elementary
agent model for the rescue agents: fire brigades, ambulances and police
forces, as well as their operation centers; we also devised a simple model
of civilians and run some test experiments.

The document is structured as follows. First, we briefly describe the
GIS editor. Then, we present the ADK for the Rescue domain: we first
address its implementation on top of the RoboCup-Rescue ADK [1];
then we address the implementation of ADK agents in the RoboCup-
Rescue domain. Both these sections contain notions that are needed to
develop agents based on the ADK in the RoboCup-Rescue domain. The
subsequent sections illustrate various aspects of the adaptation of the
RoboCup-Rescue simulator to a new scenario: we start by sketching a
simple model of the rescue agents, then we describe the scenario.

We finally discuss some preliminary ideas for carrying out systematic
evaluation of situation assessment strategies, as well as more compre-
hensive evaluation criteria taking into account the overall performance
of the system.



1 GIS Editor

Before describing the functionalities of the GIS editor, we briefly present the for-
mats used by the RoboCup-Rescue simulator to store the GIS data and record
the initial disposition of agents, fire-points, damaged roads/buildings, etc. The
files containing the data for the RoboCup-Rescue simulator can be easily cre-
ated/edited using our GIS-Editor.

GIS data are stored into several files:

— Building.bin, Road.bin , Node.bin - These files contain all the information
about buildings, roads and nodes, respectively;

— Galpolydata.dat, Shindopolydata.dat - They store informations about the ini-
tial effects of the earthquake over buildings and roads, respectively (see [7]
for details).

— gisini.tet - This is a text file containing the initial disposition of all agents
and ignition points (initial locations where the fire propagates from) on the
map.

The GIS editor is an interactive graphic tool for editing the GIS files: it
allows one to create a RoboCup-Rescue map without any programming skills.
The basic operations that can be carried out are:

— loading a raster file to draw the gis map on (this allow to manually creating
a map from a bitmap picture)

— adding/modifying objects (nodes, roads, buildings) and object properties;

— specifying shindopolydata/galpolydata information, that controls the be-
haviour of the collapse simulator;

— setting the initial position of the agents in the simulated world;

setting the position of the ignition points;

transforming the world in various ways (mirroring/shifting/resizing);

— exporting/importing GIS information to/from a relational database for easy
in-depth viewing/editing from other applications;

— checking a large set of map inconsistencies: in particular, it verifies if the
graph formed by buildings, nodes and roads is connected, i.e. if it is possible
to reach every location on the map from every other one.

The GIS editor can be downloaded at
http://www.dis.uniromal.it/"rescue

For more information on the use of the editor please refer to the online docu-
mentation. This tool has been used in the modeling of the city of Foligno, whose
model is presented in a later section.

2 ADK and the RoboCup-Rescue Domain

In this section we describe the RoboCup-Rescue world model and our implemen-
tation of ADK in this particular domain (refer to [3] for the notions concerning
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the general framework).

Our work exploits and extends the RoboCup-Rescue Agent Developement
Kit, made by Micheal Bowling (see [1]) that is a general programming-framework
for implementing agents for the RoboCup-Rescue simulator. That tool provides
some basic mechanisms for exchanging data with the RoboCup-Rescue Simua-
tor, as well as a set of primitives that hide the low level implementation details
to the agent developer. We specialized the Bowling’s RoboCup-Rescue ADK,
by adding a set of modules and functionalities, in order to implement the ar-
chitecture described in [3]. In the following, the term ADK or Extended ADK
refers to our agent developement tool, while RoboCup-Rescue ADK denotes the
one discussed in [1]. We first describe the RoboCup-Rescue World, then we dis-
cuss the adaption of the Rescue structures to cope with the features required
by the ADK modules, and the communication primitives we added to the orig-
inal RoboCup-Rescue ADK agent capabilities. Finally, we discuss agent state
monitoring features added to analyze coordination and fusion strategies.

2.1 RoboCup Rescue world model

The RoboCup-Rescue world model is minimal, but it could be easily extended to
fit real scenarios more closely. It deals with three main entities or object classes:
buildings, roads and nodes, respectively. Building objects represent every kind
of building on the map: houses, police offices, hospitals, fire stations, ambulance
centers, refuges, etc. As a result of a earthquake shock, a building can collapse
and obstruct a road; moreover, a building can catch fire more or less likely,



according to its construction material; for example, a concrete building is less
flammable than a wooden one. Further, buildings can have one or more floors
and one or more linkage points with the surrounding roads. A Road can be
partially or totally obstructed by rubble in consequence of the collapsing of an
adjacent building. Further, a road has one or more traffic lanes on each side and
can have a sidewalk or not. The road network is described by a graph having
one or more edges for each road and one node for each crossroad and for each
junction between adjacent edges constituting a road.

Access Point

Junction
Node

Fig. 2. GIS Objects

Each object class (building, road, node) is characterized by a number of at-
tributes describing a specific instance of the class. The main attributes are the
following:

— Buildings : Plant, Kind, Material, Fieryness, Brokenness, Floors, Access-
points.

— Roads : Kind, Length, Width, Block, Repair-Cost, Lines-to-head/Lines-to-
tail, Sidewalk-width.

— Nodes : Connected-Roads, Signal, Signal-timing.

2.2 Interfacing ADK and RoboCup-Rescue Simulator

Using the ADK in developing a multi agent system that works in the RoboCup-
Rescue Domain, one has to face two main issues:

— the extension RoboCup-Rescue World, for fitting the ADK World Require-
ments

— the interface between the ADK communication subsystem and the commu-
nication primitives provided by the simulator



Before addressing them, we recall that in the RoboCup-Rescue Agent Develop-
ment Kit [1], two main classes are defined:

— a Controller class, that is the base class of the user agents. In such a class

the basic operations of the agents, like moving to a location, extinguish a
fire or communicate, are defined.
An ADK Agent is built on the top of such a class, and extends the interface,
while keeping compatibility. The major improvements are the definition of
a communication interface that allows channels, an interface to the fusion
modules, and a plan execution module.

— a Memory class that implements the world structure. Such a memory class
has been extended in order to fit the requirements of the ADK. The major
features added are:

¢ module introspection
e serializability of the object properties over the agent communication
channel.

World Objects The RoboCup-Rescue Objects fit a good part of the above
discussed requirements about the ADK World Objects, in particular they pro-
vide, for each object: serializability and uniqueness (all the agents know the same
object with the same key). We only need to extend their definition in order to
add the concept of Property Information Source (Justification) and some kind of
introspection capability. Both features are needed for developing the information
fusion component. The definition of an object as a set of properties, instead of
an already-built, well known class, leads to the design of platform independent
fusion strategies. However, the possibility of seeing the world as a Rescue World
is not lost, since it is useful for testing special domain dependent strategies.

We also manipulate the way an agent receives data from the simulator, to
be able to implement the state reconstruction schema discussed in [3]. In the
RoboCup-Rescue ADK the data coming from the simulator are directly written
into the agent memory. Since we want the Simulator updates as well as the agent
Reports to be stored in the Sensor Memory, we need to modify that part of the
data path.

Moreover, in order to maintain backward compatibility with the RoboCup-
Rescue World and with the RoboCup-Rescue ADK, we write our data in a
structure derived from the original one and we need to remap the original access
functions. In Figure 3 the data path modifications are shown.

Communication and Coordination The Rescue simulator allows an agent
to communicate with the others through two medias: voice and radio. Only the
rescuers (police agents, fire brigade, ambulance team) can use the radio. An agent
using the radio can communicate, in a broadcast way, only to his central station
and to agents of the same kind (i.e. a Police Agent can only communicate with
police agents and police station). The central stations can communicate with
each other, although they are a different kind of agent. Since we want to define
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groups of communicating agents, we assign a radio channel to each group. The
Rescue Framework allows the transmission of text messages and we have defined
a simple message format that packs the channel number in the message body.
On the receiver side, an agent simply discards the messages having a channel
number different from their own. Summarizing, the communication operations
an agent can perform are the following:

— telling /hearing a message through the radio on the selected channel;
— setting/quering the radio channel;
— hearing a radio message from a generic channel.

The coordination of the Rescue Agents, as described in [3], makes use of two
kinds of coordination messages: the commands from the central station to the
agents acting in the environment and the intentions for dynamic task assignment.
These messages are distributed on virtual networks simulating broadcast radio
communication as described above and, due to the publish /subscribe mechanism,
they are received only by the agents that are entitled.

2.3 Monitoring the fusion process

As described above, each agent stores its knowledge about the world in his mem-
ory (the "standard” memory or the "extended” Sensor Memory), that is a set of
objects and object properties, and build a representation of the world based on
various data recorded in its memory. Thanks to the ability to communicate by
voice or radio, agents can exchange information; consequently, at each simulation
cycle, the agent memory is updated, resulting in updates of the world represen-
tation with new objects, or object properties with new values. It is interesting for
analyzing situation assessment to follow the evolution of agents’ knowledge dur-
ing the simulation progress: the world knowledge of agents developed using the
ADK framework can be monitored through a generic Robocup-Rescue viewe. In



fact, at every time it is possible to connect a viewer module to an agent module
allowing to view the agent world knowledge and follow their changes during the
simulation.

3 Implementing agents using the ADK

In this section we shortly present the Plan Assistant, which can be used to design
the agent plans and interface and the functions for defining primitive actions and
fusion capabilities. The latter are not intended to be a complete documentation,
but a short introduction to help specifying the code that implements the agents.
They require some knowledge of the RoboCup-Rescue Agent Developement Kit
Manual [1], and can be skipped by the reader not interested in implementation
details.

3.1 Plan Assistant

Agent plans can be represented as graphs; the Plan Assistant is an interactive
tool for designing plans by drawing their representative graphs: it allows to
place nodes and connect them with edges. Moreover, both edges and nodes can
be labeled with information. The Plan Assistant interface is shown in Figure 4.
The basic operations allowed by the Plan Assistant are:

— add/delete/label a node

— add/delete/label an edge

— load/save a plan to/from a plan file
— save a file in a printable format

Since the graph representing a plan must be coherent with the plan repre-
sentation, as specified in [3], a rule check mechanism has been added, in order to
verify some properties of the drawn plan; as an instance, the program does not
allow to save a plan where a goal node has not been defined. Moreover, there
are some rules on the kind of edges leaving from a node: at most one edge can
contain an ordinary action; if a sense action true branch leaves from a node, also
the false branch has to leave from that node.

For a detailed explanation of the plan representation see [3].

3.2 Action Implementation
The implementation of primitive actions requires the following definitions:

— an extended set of operations
— action interface
— a procedure for loading the plans from a file

In order to implement an action the user has to extend one of the follow-
ing two classes: pemAction or pemCondition, if the action being implemented
is an ordinary action or a sensing action, respectively. Before presenting the in-
terface for defining primitive actions, we recall the Basic rescue operations ad
Communications operations.
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Rescue Basic Operations The basic operations (see [1]) can be summarized

as follow:

— void
— void
— void
— void
— void
— void

act_move(Object **path): move the agent along the specified path;
act_open(Road *target): remove debries from a blocked road.
act_rescue(Humanoid *target): rescue an injuried civilian;
act_load (Humanoid *target): load an injuried civilian on a car;
act_unload(): unload a previously loaded civilian;

act_extinguish simple(Building *target): extinguish flames in a

burning building.

Communication Operations In addition to the above, our ADK introduce
the following communication operations:

— void

act_radio_tell( const char* msg): tells a message through the ra-

dio on the selected channel

— void
— void

setChannel (int): sets the radio channel
getChannel() const: returns the radio channel

— virtual void radio_hear(const char* msg): called by the system when-
ever an external message sent to the current channel is received

— virtual void radio hear(int& chn, const char* msg): called by the sys-
tem whenever an external message is sent without doing channel check. Use-
ful for implementing central coordination agent that has to hear concurrently
on more than one channel.



Through these primitives we allow for the definition of groups of agents be-
longing to the same radio channel. The communication within each group is
broadcast. There are some limitations in the creation of groups: it is not possible
to create groups of agents having different type, and an agent can communicate
only with its central station. Central stations can communicate with each other.

Ordinary Action Interface (pemAction class) An ordinary actions imple-
ments the following interface:

— the void Initialization() method, that is called whenever the plan sched-
uler enters in a new state;

— the void Termination() termination method, that is called whenever the
plan scheduler leaves the state;

— the void ExecuteStep() method, that is called each scheduler cycle;

— the ActionState getActionState() method, that is invoked by the sched-
uler to check the action execution status. An action can be in-progress or
finished.

Sensing Action Interface (pemCondition class) A sensing action imple-
ments the following interface:

— the void Initialization() method;

— the void Termination() termination method;

— the bool Eval() method, that is called each scheduler cycle to test the value
of the sensing action.

Loading Plans and Actions After loading a plan from a file the instantiated
actions are expressed as character strings, that need to be bound with the corre-
sponding executable action class instances. This is done by the ActionManager
class that allows one to bind an ordinary action and a sensing action, respec-
tively, through the void addAction(..) and the void addCond(..) methods.
A different instance of the ActionManager class is needed for each agent instance.

After loading a plan through the ActionManager: :planLoad(const char *
filename) method, it is possibile to refer to the loaded plan as an action us-
ing the ActionManager: :getAction(const char* actionName). Since a plan
is seen as a simple action it is also associated to a string key. Such a string key
is the value of the filename argument of the loading function. That allows for
the definition of hierarchical plans by simply labeling higher level plan actions
with the names of the lower level plans, then iteratively loading all plans and
base actions.

3.3 Information Fusion Implementation

As previously said, ADK implements an information fusion module. Here we
discuss the steps needed to use and extend such a module. Since the fusion
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module is implemented as an extension of the Controller and Memory classes
provided by the RoboCup-Rescue ADK [1], here we describe the extensions and
the enhancements made to such classes.

In order to activate the information fusion extension, the user has to execute
the following steps:

— Activate the world extensions, such as introspection, that are needed by the
fusion processes.
— Design a fusion policy by choosing;:
e how to solve the conflicts;
e when to send a report!.

First we deal with the structures that have to be instantiated by the agent
classes, then we look at the specific task of each overridable method. Moreover,
we show what kind of initialization has to be done in order to activate the fusion
process. Finally, we trace the execution of the fusion process through the sources,
in order to highlight the execution context of each of the methods that has to
be redefined in customizing the fusion strategy.

Agent Class: Fusion Structure Instantiation For each agent is needed:

— A Controller derived class, that implements the agent specific methods, by
overriding the original virtual methods.

— A Memory or a Memory derived class, that implements the agent memory.

— A SensorMemory or a SensorMemory derived class.

These classes have to know each other. This is easily done by the addition of the
following rows in the Controller derived class constructor.

MyAgent: :MyAgent (int type) : Controller(type, new Memory)
{

m_memory = (Memory *) Controller::m_memory;

/*make the memory to know the owning controller*/
m_memory->setController(this) ;

/*Sensor Memory creation*/
sm=new SensorMemory() ;

/*make the Memory to know the SensorMemory#*/
m_memory->setSensorMemory (sm) ;

/* rest of the constructor ..*/

! the atomic information unit (see [3])
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Implementation of a fusion strategy In order to implement a fusion strategy
a user has to:

— define a Conflict Resolution strategy by implementing an ad-hoc class or by
the use of the class
SimpleConflictResolver

— define what to do when a report is received through the network by eventu-
ally redefining the method
Controller: :parseupdate(const charx)

— define what to do once an object changes its state by redefining the method
Controller: :sense_change(Object *o0)

— define which parts to send of each updated object by redefining the method
Controller: :send sensed object (Object *o)

Program and Agent Initialization When the program starts, the static
structures for the introspection of the world objects have to be set up. To this
end, at the beginning of the main() method, the following must be added

objdef_init();

After the structures used by the fusion modules have been instantiated, the
activation of the fusion process can be done by calling, after the connection and
initialization stages of the Agent, the method
SensorMemory: :setActive(bool)

After the initialization stage the virtual method
Controller::init()
is called, so to enable the fusion it is just needed to override it with a function
that, in its body, invokes the
SensorMemory: : setActive (bool)
on the Sensor Memory of the agent, with a true argument.

Execution Trace At each cycle the fusion process procedes as follows:

1. The agent sensing is broken into many reports, that are stored into the
Sensor Memory, with Justification value meaning the agent senses.

2. The external reports (by other agents) are collected in the Sensor Memory.
Each time a new report arrives, it has to be parsed and stored, via the
method
Controller: :parseupdate(const charx)
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3. The virtual method
Controller::integrate_changes()
is called; this starts the analysis of the collected data. A ConflictDetector
class finds the conflicts identified in the current time of the sensor memorys;
then a ConflictResolver class performs the fusion process.

4. The Memory: :integrate_changes () method is called on the output of the
integrate_changes() in order to modify the agent update process; this
causes the updates to be partitioned by the Object Identifier, in order to
cluster the changes that affect each object.

5. For each modified object the method
Controller::senseobject(Object* o,

const list<ValueReportMap: :const_iterator>& propertySet)
is called. This is a virtual method, so the user can override it.
The agent memory update is performed only by the method
Controller::senseobject(...).
If this method is redefined by the user, a call to the original method has
to be done within the redefined method body in order to affect the agent
knowledge. That means that prior to call the method
Controller::senseobject(...) the object is unmodified, while after it is.

6. After an object is updated, the empty virtual method
Controller: :sense_change(Object *o0)
is called.

7. The virtual method
Controller: :send sensed object (Object *o)
is called, in order to send a message with the updated world objects. Here
the user can specify when a report about an object has to be sent.

4 Modeling Rescue Agents

In this section we sketch a simplified model of agents that can be used for a first
set of test experiments. The definition of refined models for agents is beyond
the scope of the present work. There are two categories of agents in the Rescue
domain: the ones that have to be rescued and the rescuers. Civilians belong to
the first category, while police forces, ambulances and fire agents belong to the
second one.

The task as well as the operational capabilities of each agent depend on
its category. As an instance, an Ambulance Team cannot extinguish a burn-
ing building. The role of each category of agents with rescue capability is the
following:

— Police Team: free the road blocked by debries.
— Fire Team : extinguish fires.
— Ambulance Team: rescue injuried people.

For each of the rescue agent categories, a central station is defined, that is
modeled as an agent, whose goal is to coordinate other agents’ operations.
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While agents of different categories cannot communicate, central stations can
communicate with other stations.
In order to simplify the framework for testing, we made some design choices:

— Situation Assessment is performed only by the central stations, via the re-
ports received by the rescue agents.

— The agents execute the tasks given by the central station they belong to,
and send reports about the sensed world.

4.1 Police Force

In the Rescue domain, the role of the police force is to free the roads blocked by
the debries in order to allow civilians and rescuers to pass through them.

A police force agent can belong to one of these two categories: Police Agent,
which models a human agent who directly acts in the world, coordinating its
behaviour with teammate through distributed coordination; Police Center: agent
that performs centralized task allocation and state reconstruction.

Police Agent The PoliceAgent is designed according the following criteria:

— A police agent can be in one of these two states: BUSY or IDLE, depending
on its current task allocation.

— A police agent knows only the information percepted by his sensors, plus
(optionally) the information sent by the police center concerning the area
where to operate.

An agent is in the idle state by default. It switches in busy state once allocated
by the police center to one of the following tasks:

— to clean a road or an area (commandClean)
— to explore an area (commandGo)

When the tasks have been performed, the police agent switches back in idle
state.

A police agent in idle state can be within the central (inCentral) or out-
side. If it is in the central, it waits for allocation, while, if outside it explores
the environment by entering unknown buildings (VisitNearBuilding) or checking
roads(GoUnknownRoad).

Figure 5 presents the plan executed by a Police Agent; light (red) arrows cor-
respond to sensing actions, dark (black) arrows correspond to ordinary actions.

PoliceCenter It performs resource allocation to assign task to the agents using
a simple method, and integrates the information coming from the police agents
exploring the environment. Once received a fire notification, it sends the Po-
liceAgent that is in idle state and is nearest to the area affected by the fire. In
case the Police Center receives a notification of an injuried victim, it does the
same as for fire notification, sending the nearest free police agent; in addition, a
request to the ambulance center is made.
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Fig. 5. Plan executed by the Police Agent

4.2 Fire Team

Fire Team agents can belong to the following categories: the Fire Agent, that
model human agents that operate in the real world to extinguish fires, and the

Fire Center which is a coordinator agent.

Fire Agent A Fire Agent can search a fiering area or move to an area speci-
fied by the Fire Station. When it is close to the fire, it tries to extinguishing it.
It stops the extinguish action and starts a new search when one of the follow-
ing situations occurs: the fire has been extinguished, or the building has been

completely destroyed.
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Fire Station The fire station collects and integrates the information sent by the
fire agent, and allocates Fire Agents with a simple policy as the Police Center.

4.3 Ambulance Team

An Ambulance Team agent can be of two kinds: Ambulance Team or Ambulance
Center. The first is a model of the human agent that has to extract civilians
and agents from the debries of the collapsed buildings and carries them to the
refuges, while the second one takes care of allocating the resources using his
world knowledge.

Ambulance As for the Fire Agents, Ambulance teams can search injuried peo-
ple or move to a location specified by the Ambulance Center. When close to a
victim, the Ambulance loads it and brings it to the nearest refuge.

Ambulance Center The ambulance center collects and integrates the informa-
tion sent by the ambulance team agents, as well as requests from other centers.
Like the other rescue centers, it performs a simple task allocation.

4.4 Civilians

Their basic behaviour of the civilians is to go in the refuges once the alert
situation begins. Optionally they send help messages that can be heard by the
central stations or the neighbour rescue agents.

5 Modeling a real scenario

In this section we show how to set up a RoboCup-Rescue simulation starting
from a real disaster scenario, which requires the following steps:

— Developing a set of rescue agents having the desired behaviours; this involves
the use of the ADK for developing the agents, and the Plan Assistant for
defining the agent plans.

— Designing a map for the choosen site. This could be done using the GIS
Editor.

— Setting the initial position on the map of agents, rescue centers and ignition
points, also done with the GIS editor.

— Defining a proper execution asset.

While the definition of rescue agents was given in the previous section, below
we address the other steps.
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5.1 The Earthquake of Umbria and Marche

Throughout the fall of 1997, a serious earthquake affected the Italian regions of
Marche and Umbria: many housing estates as well as important monuments were
heavily damaged, first and foremost the world-famous Basilica of S. Francesco in
Assisi. In order to experiment and verify techniques and methodologies developed
in our work, we have selected Foligno, one of the most important cities in that
region, as a scenario for significant disaster simulations in order to test the
applicability of the approach; below, we discuss the features of the chosen site
and describe the main aspects of its representation within the simulator.

5.2 Domain features

Foligno is located in a flat region of eastern Umbria. Its urban structure is char-
acterized by a medieval center surrounded by more recent suburbs; in particular
we are focusing our attention on an area of about 4 km?2 corresponding to the
city center.

Fig. 6. The center of Foligno

In the area under consideration there are no high-rise buildings; most recent
structures are mid-rise, in the four- to nine- story range. All large, multi-story
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buildings were constructed of reinforced concrete. Oldest buildings were mainly
constructed of rubble-work, whereas only few structures are steel frame buildings
or wood buildings. There are no industrial structures; most buildings are hous-
ing estates having variously-shaped plants. The road network is quite irregular,
with not very large roads and narrow alleys.

Important public estates are situated inside this zone: the Hospital, the Fire
Station, the main Police Center as well as other less important Police offices.
Many buildings in this area are very interesting from the hystorical point of
view: most of them are well-preserved Middle-Age-dated estates. The earth-
quake injured many of them quite seriously.

From our point of view, the choice of Foligno as the scenario for our simula-
tions is very suitable for several reasons:

— It is a not very large town, but it has nevertheless all the items we consider
most interesting for the Robocup-Rescue simulator: the hospital, the fire
station, the police office, etc. etc.

— Quite a lot of information about this site (maps, data on buildings and roads,
etc) is available.

— The results obtained during our experiments with the simulator (best inter-
vention strategies, optimal resources allocation, etc.) can be analyzed taking
into account the (well-documented) behaviours of the real (human) rescue
forces immediately after the earthquake.

- Rescue Viewer =]/ [x]

] [
Information If\mkoma to legViewer 1.5.2 (2002/05/03) by the ReboCup-Rescue Project TIME = 0
|j Copyright(C) 2000-2002 by V.kuwata kuwatay@nttdata.cojp

Fig. 7. Foligno Map seen by the Simulator
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5.3 Initial conditions
The simulator initial conditions consist of:

— the initial position of each agent;

— damage of each building in the map;
the initial fire points;

the collapse simulator initial conditions.

In order to model the initial condition we placed the civilians according to
the people distribution over the territory, taking into account the function of
each building. Such a distribution has high values in buildings of public use, low
values in poorly populated areas.

In the initial conditions we modeled we have:

50 groups of civilians
12 fire teams

12 police forces

12 ambulances

plus a fire station, a police office, an ambulance center and an hospital (the
refuge).

The collapse simulator initial conditions has been modeled taking into ac-
count a feasible earthquake center. The fire points can be placed in the map to
maximize the simulation dynamics.

5.4 Execution Asset

Due to the high level of processing power requested for executing the simulation,
we used a cluster of four Linux based boxes connected by an high speed network
(for the details and configuration, see [4]). The processes are distributed on each
machine in the following way:

1. kernel, miscellaneous simulator, road block simulator, 10 civilians
2. traffic simulator, fire simulator, collapse simulator, 10 civilians

3. police agents, police office, fire station

4. fire agents, ambulance agents, ambulance center

to uniformly distribute the computational load in order to maximize the perfor-
mance.

6 Evaluation of Situation Assessment: preliminary
remarks

An interesting possibility offered by the RoboCup Rescue simulator is the eval-
uation of different techniques for information fusion and situation assessment.
Such an evaluation could rely on measures that can be effectively computed
through simulations.

Specifically, the evaluation of situation assessment can address the following
aspects:
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effectiveness of a particular fusion strategy;

— robustness with respect to errors in sensing, and network noise;
certainty on the reconstructed situation;

computational effort.

Situation assessment can be measured by comparing the real-world as known
by the simulation framework and the world known by the agent who performs
situation assessment. Moreover, the overall system performance, as well as the
rescue policy strategies, can be measured in terms of the number of rescued
agents.

Errors can be artificially introduced to simulate sensor or network noise, to
verify how they affect the performance. As an example, the following experimen-
tal settings can be considered in order to analyze situation assessment by the
central stations:

— FError-free: no errors in communication and no erroneous indications by the
agents. In such a setting, the overall system load can be evaluated, as well
as the ideal performance of a fusion technique.

— Erratic Agents: they provide possibly wrong information. By introducing
agents sending incorrect estimation of the world it is possible to have a
measure of the robustness of the fusion process, with respect to the noise in
the information reports.

— Communication Noise: messages can be lost. The introduction of network
noise, in terms of undelivered messages, can give an estimation of the sensi-
tivity of the information fusion process to communication failures.

In addition to the specific fusion technique, there are several other factors
that can influence the behaviour of the system, and, consequently, the evaluation
of situation assessment; among them:

— the agent behaviours;

— the resource allocation policies used by the central stations in assigning tasks
to the agents;

— the coordination strategy used among agents at the same level.

A complete evaluation of situation assessment should address also these pa-
rameters, because not only the overall performance, but also the knowledge
acquired by the agents can be dependent on them. Therefore, it is an interesting
and challenging task to define a proper set of experiments that can take into
account of such a broader view of situation assessment.
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Abstract. In this document we deal with multi agent systems for “Sit-
uation Assessment”. Situation Assessment is the task of reconstructing
the knowledge concerning a physical scenario that is dynamically and
unpredictably changing, as, for example, in the case of natural disaster.
In particular, we aim at assessing the situation in the framework of a
simulation scenario, where a variety of external events can occur and a
number of agents are in charge of handling the emergency, by accom-
plishing a specific mission, such as human life saving. Information about
the situation can be acquired in several ways, through inspection by the
agents (rescue parties) or through a variety of external sources. A pre-
cise understanding of the situation is fundamental to foresee its possible
evolutions and to decide the actions to be taken.

The aim of the work reported here is to define the architecture and
the basic features of the the software agents that are needed in order
to properly address the task of Situation Assessment. The intended ap-
plication domain is the RoboCup-Rescue Simulator, which provides a
suitable basis for developing and testing multi agent systems with the
above described features.

The architecture of our multi agent system thus combines the require-
ments of deliberation and reactivity, that have been pursued by through
the design of so-called cognitive agents, together with the ability to coor-
dinate the behaviour of several agents that contribute to the assessment
of the situation, while fulfilling their mission. More specifically, under the
assumption that the agent can communicate according to some structure,
possibly referring to different organizations, we model the basic features
that characterize the behavior of an agent: the plans that allow the agent
to accomplish its task, its information fusion policies, its capability to
cooperate with other agents.

The document is structured as follows. In the first section we describe the
basic features of cognitive agents and discuss the main design choices and
functions of a system of cooperating agents. We then present the basic
features of the Agent Development Kit (ADK), which provides a basis for
the design of agents that are capable of executing plans, combine infor-
mation coming from several sources and cooperate in order to accomplish
a common goal. Subsequently, we present the main features of the im-
plementation of our ADK, specifically addressing the plan specification
and the information fusion component.



1 Agent Modeling

The notion of autonomous agents is central to the field of Artificial Intelligence
and the design of intelligent agents (both physical agents, i.e. robots, and soft-
ware agents) is one of its foundational research goals.

Initially, the focus of the research on the design of autonomous agents has
been on the high-level representation of actions that they can perform (see [30]
for an historical perspective). However, it soon became clear that it is very
difficult to build agents that exhibit the desired behaviour in real environments,
simply on the basis of such a declarative representation. Consequently, research
split into two streams, that developed rather independently of each other. On
the one hand, the basic functionalities of the agents have been developed (see
for example [3] for a discussion of reactive architectures for mobile robots); on
the other hand, an agent needs not only the ability to promptly react and adjust
its behaviour based on the information acquired through its sensors, but also to
achieve high-level goals. Therefore, it should also be able to reason about the
actions it can perform, find plans that allow it to achieve its goals and check
whether the execution of the actions leads to the accomplishment of the goals.
The integration of reactive and planning capabilities has thus become a focus of
research in mobile robotics (see for example [31,15,33]).

We believe that this renewed effort to combine a logic-based view of the
agent with its reactive functionalities is essential to devise agents that operate
in a real world environment. To this end a new research field has been developing
in the last years. It is named Cognitive Robotics [25] and it aims at designing
and realize agents (mobile robots as well as simulated agents operating in virtual
representations of real environments) that are able to accomplish complex tasks
in real, and hence dynamic, unpredictable and incompletely known environments
without human assistance, and that, to this purpose, can be controlled at a high
level by providing them with a description of the world and expressing the tasks
to be performed in the form of goals to be achieved.

The peculiar features of a cognitive agent are:

— the presence of cognitive capabilities for reasoning about the information
sensed from the environment and about the actions it can perform;

— the ability of properly and promptly reacting to changes occurring in a real
environment, that is dynamic, since changes can occur at every time and a
timely response to these changes is sometimes a critical factor, unpredictable,
so that the effect of changes in the environment cannot be always and com-
pletely foreseen; partially known, hence it is not possible to have complete
information on the environment, since many situations cannot be known a
priori.

In this section we first present an architecture for modeling and implementing
cognitive agents that has been devised and actually adopted for realizing many
actual cognitive robots ([21], soccer robots [4] and also cognitive agents for the
information extraction from the Web [10]). Then, we address the problem of
coordinating a team of such cognitive agents.



1.1 Simple Agent Model

In principle, an intelligent agent can be seen as a device capable to perform three
kinds of activities:

— sensing: reading and interpreting the external world information to maintain
an internal state of the world, representing the knowledge of the agent about
the environment;

— planning: choosing which actions should be performed in order to accomplish
a given task;

— acting: performing the chosen actions in the environment.

sense

‘ agent ’ plan

act

Fig. 1. Base Agent Model

A cognitive agent operating in a real dynamic environment must perform
these activities periodically, implementing the so-called sense-plan-act cycle.
However, in the actual implementation of the agents this solution is not fea-
sible, since it does not take into account the fact that for complex tasks these
activities may be very time consuming, thus affecting the reactivity of the agent
in the real world [3].

This is the main reason for which many researchers have proposed differ-
ent approaches for designing autonomous agents [3], often without an explicit
representation of the knowledge of the agent and of the associated reasoning
capabilities of the agents.

The solution adopted by most of the recent works in this field has been the
development of hybrid architectures that allow for both the implementation of
the sense-plan-act cycle and the definition of reactive behaviours in response
to the environment changes. A classification of such hybrid architectures makes
a distinction between those that make use of a single common representation
for the information of the agent about the world [19, 33, 31] and those that use
heterogeneous representation for these data [15].

The architecture presented in this section (see also [21] for further details)
has three main features:



— different layers, that are useful for better modularizing the design and the
implementation;

— asynchronous modules, that allow for integrating cognitive and reactive ca-
pabilities;

— heterogeneity, that allows for using different techniques in the different mod-
ules of the architecture.

1.2 System Architecture for a Cognitive Agent

The software architecture of our agent, shown in Fig. 2, presents a cognitive
level, based on a logic representation of the agent’s knowledge, and an operative
level, based on a geometrical representation of the environment and a set of
values denoting the internal state of the agent.
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Fig. 2. Layered Agent Model

The high-level knowledge of the agent about the environment is constituted
by a description of the dynamic system, containing information about the state
of both the agent and the environment. This knowledge is represented over two
levels: a deliberative model, including a symbolic knowledge base, and an opera-
tive numeric model, constituted by sensing data and numeric object properties.

Operative Level The operative level of an agent is very specific to the imple-
mentation domain and thus will be described in the next sections of this report.

Deliberative Level The deliberative level is mainly concerned with an ex-
plicit representation of the agent’s knowledge, based on Description Logics. This



knowledge is formed by both a general description of the environment provided
by the agent’s designer and the information acquired during task execution. The
language specification and the reasoning services used in this level are described
in the next subsection.

The deliberative level is formed by two components: a high-level knowledge
acquisition module and a reasoning system.

The knowledge acquisition module is in charge of building and maintaining
a knowledge base expressing a high-level model of the world in which the agent
is embedded. This process makes use of artifacts in the numeric representation
of the world, referring to objects in the environment, and the results of sensing
behaviours to update the agent’s knowledge about the environment. In this way,
every high level atomic predicate can be monitored. For example, the property
of being in a room is satisfied as long as the position of the agent is within the
range of the artifact representing the room, while a door closed is detected by
an interpretation routine driven by a sensing behaviour.

The reasoning system processes the knowledge base containing information
on the world in order to make decisions about actions to be performed for goal
achievement and a planning procedure has been developed in order to generate
plans. A sketch of the main features of the representation and reasoning system
is given below.

A Brief Overview of the Reasoning System Here we briefly recall a for-
malism for reasoning about actions, that has been recently proposed in [8,22],
and the implementation of a planner based on this formalism.

The main objective is to develop reasoning tools for a cognitive agent, and
in particular a plan generation procedure for selecting the actions that will lead
to the achievement of a given goal. Observe however that, because of incomplete
information on the environment, achieving a goal usually depends on the possi-
bility of performing actions for knowledge acquisition. So the reasoning system
must be able to take decisions about the execution of both actions involving
changes in the dynamic system, for example moving actions, and sensing ac-
tions, that are knowledge producing actions affecting only the knowledge of the
agent about the system.

The basis of our proposal for reasoning about actions is provided by Propo-
sitional Dynamic Logics (PDLs) [22, 8], suitably extended with a nonmonotonic
modal operator of minimal knowledge. In the standard framework, the dynamics
of the system is specified in terms of what is true in the world. However, in a
cognitive agent the dynamics is specified in terms of what the agent knows of the
world. The idea is that the agent achieves its conclusions based on its epistemic
state and not on the actual state of the world. This change of viewpoint in the
representation has two important consequences: (i) it simplifies reasoning, and
in particular it simplifies the task of deducing plans; ii) it makes deductive plan-
ning always constructive, i.e. the reachability of a state in which the goal holds
is deduced only if there exists a known sequence of actions that leads to it.



Following the approach in [29], the behaviour of the dynamic system can be
specified by means of a set of axioms that are described below.

— Static azioms specify properties which are true in every state and do not
depend on actions. In other words, static axioms are used for representing
background knowledge that is invariant with respect to the execution of
actions.

— Precondition azioms specify circumstances under which it is possible to exe-
cute an action. We assume that the designer of the system is able to specify
sufficient conditions for actions to be executed.

— Effect azioms specify (direct) effects of an action if executed under given cir-
cumstances, i.e. if executed in a state satisfying certain premises. Obviously,
through static axioms, additional effects can be inferred from those specified
by effect axioms. Observe that, in general, we do not require the designer to
specify all the effects of an action.

— Frame azioms are used for expressing different forms of inertia laws. In par-
ticular, we are able to specify default frame axioms, i.e., default persistence
rules which state that, if in the current state the property C holds, then,
after the execution of the action R, the property C holds, if it is consistent
with the effects of R. We also use epistemic frame azioms in our specifica-
tion, which are able to express “causal” persistence rules. Such axioms are
used to represent the fact that a property C is propagated only if another
property D holds in the successor state. By suitably instantiating the above
kinds of frame axioms in our system specification, we are able to formalize
both inertial and non-inertial properties, and both inertial and non-inertial
actions, thus addressing both the frame problem and the presence of exoge-
nous events in our framework.

In addition to these kinds of axioms, we assume that the designer specifies
the knowledge about the initial state, by providing an initial state description
in terms of the properties (not involving actions) that are associated with the
initial state.

Actions are assumed to be deterministic, which means that at most a sin-
gle successor state is determined. However, the properties associated with such
successor state are generally different in different interpretations. We might say
that actions are deterministic but their effects are underdetermined in general.

The planning problem in our framework can be formalized as follows: given
a KB of axioms denoting the properties of the environment and of the agent’s
actions, a description of the initial state and of the goal, determine a plan that,
when ezecuted from the initial state, reaches a state where the goal is satisfied.

Our notion of plan is given in terms of a transition graph [23,14], which
characterizes the dynamic behaviour of the agent for achieving a given goal. More
specifically, the transition graph is labeled and nodes represent the knowledge
state of the agents about the environment, while arcs represent actions to be
performed in a given state.

The fundamental step towards the implementation has been to rely on the
tight correspondence that exists between PDLs and Description Logics (DLs)



[32,9]. By exploiting this correspondence, we have been able both to develop an
interesting theoretical framework for reasoning about actions and to obtain an
implementation that uses a knowledge representation system based on DLs.

The plan generation procedure implemented on the described logical frame-
work is able to generate plans containing sequences of actions, if-then-else con-
structs associated to sensing actions, parallel execution of primitive actions (ei-
ther ordinary or sensing actions), and simple forms of while loops (see [23,14]
for more details). The plan generated by our planer is partially correct in the
sense that “if it terminates it leads to a state satisfying a goal” [14].

1.3 Coordinating Agents

Coordination in Multi-Agent Systems (MAS) is one of the most interesting areas
of research in Artificial Intelligence and Robotics [11,26, 24], since it allows for
improving the effectiveness of a robotic system or cognitive agent both from
the viewpoint of the performance in accomplishing certain tasks [11] and in the
robustness and reliability of the system [26].

In order to coordinate a team of cognitive agents many design choices must
be considered: (i) centralized vs. distributed system architecture; (ii) explicit vs.
implicit communication; (iii) deliberative vs. reactive system. In the following
a brief discussion is reported for each of these design choices, while a detailed
description of the proposed solution adopted within our framework is described
in the next sections.

internal internal internal internal
dtate dState sState State
coordination coordination coordination coordination
manager manager manager manager
communication communication communication communication
layer layer layer layer

communication network

Fig. 3. System architecture for agent coordination

Centralized vs. Distributed. A centralized approach in the coordination
of a Multi-Agent System is based on the presence of a special agent, that we
call the Coordinator, that acquires and fuses information from the other agents
in the system and, based on a global reconstruction of the state of the envi-
ronment, is able to decide the actions to be performed by each agent in the
system. A centralized approach is very effective and simple to implement, but it
is strongly related to the reliability of the communication layer and to the abil-
ity in reconstructing global state of the world from local views of it. Moreover,
if the Coordinator agent is not able for some reason to accomplish its task all



the agents depending on the coordinator are not able to accomplish their tasks
anymore.

On the other hand, in a distributed approach each agent decides the actions
to perform on the basis of the information acquired both from the environment
and, possibly, from the other agents. In this approach, the communication load
is reduced and the robustness of the system is improved, but conflicts may arise
among the agents, thus possibly decreasing the performance of the overall sys-
tem.

In the realization of complex Multi-Agent System, it is also possible to inte-
grate both a centralized and a distributed approach. For example, the centralized
one may be used when a coordinator agent sends orders to a group of agents
assigning them a specific task to be accomplished. However, within this group
coordination of activities may be distributed for example as in [13], so that every
single agent remains autonomous in its decisions, by still taking into account the
global task assigned to it.

Explicit vs. implicit communication. Communication among agents in a
Multi-Agent System is used in order to improve team performance, allowing the
agents to acquire more information and to self-organize in a more reliable way.
Communication can be both explicit in the sense that is based on a particular
physical device (e. g. voice, or Radio transmitter) or can be implicit or stigmer-
gic in the sense that the agents share informations among them changing the
environment in a particular way (e. g. writing on the wall). Here we assume the
use of explicit communication because if the device used for the communication
is reasonably reliable (e.g. like a radio transmitter), direct communication is ob-
viously more powerful than implicit one. An example of architecture for direct
communication among agents is presented in Figure 3.

Deliberative vs. reactive system. In the context of Multi-Agent Systems
by deliberative or reactive system we refer to the architecture of the overall sys-
tem and not to the architecture of each agent. In this sense, with deliberative
system architecture we denote a system architecture that allows the team to cope
with the environmental changes by providing a strategy that can be adopted to
reorganize the team members’ tasks. Conversely, in reactive systems architec-
tures every single agent in the team copes with the environmental changes by
providing a specific solution to reorganize its own task, in order to fulfill the
accomplishment of its originally assigned goal [20]. Our approach is based on a
deliberative system architecture, in order to use all the resources available to the
system to effectively achieve the global goal.

In addition to the above design choices several issues have to be considered, in
order to address the problem of agent coordination, in particular we will discuss
the following:

— Information Fusion

— Cooperative Sensing

— Task Distribution

— Action Synchronization



Information fusion In Multi-Agent System the information from the en-
vironment are extracted from different sources. In order to acquire a finer rep-
resentation of the world those information need to be merged in a proper way.
Several different approaches to the problem of information fusion can be found
in the literature (see [17,34]). For a specific analysis of multi agent approaches
to information fusion see also [12].

Cooperative Sensing The issue of Cooperative Sensing is very similar to
Information Fusion, but normally in Cooperative Sensing different agents coordi-
nate in order to acquire a better world representation [28, 27], while Information
Fusion is addressed in order to provide a better coordination.

Task Distribution When multiple agents need to coordinate in order to
accomplish several tasks, an assignment of the task to the agents is needed. In
particular, a task should be assigned to the agents that can provide the "best”
solution for that task. The problem of choosing which agents is the best one to
accomplish a given task is not trivial: in particular a very interesting problem of
Task distribution is to choose the agents based on the current configuration of
the overall system, thus providing a Dynamic Task Assignment [16].

Action Synchronization Often agents cooperating to accomplish a given
task need to deal with resource sharing. In this case a synchronization for the
actions of the agents is needed [1], in order to avoid interference between the
coordinating agents and possible deadlocks.

In the present framework, we are specifically interested in situation assess-
ment, that is the reconstruction of the emergency scenario as it evolves over time.
Situation assessment involves both cooperative sensing and information fusion.
Moreover, task distribution and synchronization are relevant to the distribution
of all the tasks, that are involved in the rescue operations, including situation
assessment.

2 ADK Functional Description

The Agent Developement Kit (ADK) is a framework that enables for the devel-
opment of cognitive agents in an easy and structured way. Basically, the ADK
defines a basic agent architecture and provides a set of tools and algorithms that
are of general use in agent design and implementation. In this section, we present
a functional model of the ADK. We start by defining its basic components, high-
lighting their relationships with the layered model previously described. Finally,
we discuss in more detail the role and the functionalities provided by the ADK,
without specializing them to the rescue domain, which will be addressed in the
following.

ADK Agent Schema
In Figure 4 we describe the functional model of the Agent Development Kit.
The planner is not shown in the figure, but it can be thought of as the module
that generates plan library.
Before providing a description of the modules in Figure 4, we shortly intro-
duce their functionalities:
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Fig. 4. Functional Agent Description

— World

is the basic data structure made up by world objects. It is dependent on
the agent domain. The World data structure encapsulates three blocks of
the layered model: the Numeric Model, the Symbolic Model and the Model-
ing block. The Numeric Model contains the feature level information about
the world resulting from raw sensor data processing. The Symbolic Model
contains the data expressed by the Numeric Model in a way suitable for
reasoning, and the Modeling block performs the translation from Numeric
to Symbolic.

Currently in the ADK world only the feature level is stored, while an on
demand evaluation of the Symbolic Model is performed when requested by
the Plan Executor.

Plan Library

is a data structure that contains a set of off-line generated plans. It is depen-
dent on both operating domain and agent goals. The plan library contains a
plan for each of the goals the agent can pursue. The plan library toghether
with the plan executor can be related to the subset of the Reasoning System
of the layered model, which takes care of scheduling a given plan. Although
the layered model of [21] allows for on-line planning, the ADK agent is based
on an off-line planning whose goal is to generate a plan library that feeds
the scheduler.

Plan Ezecutor

is the module that chooses a plan from the Plan Library in order to reach the
specific goal set by the coordination handler. It performs the plan execution
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by starting/stopping one or more domain dependent Actions, on the basis
of some condition obtained by World analysis.

— Information Integrator
is the module that refreshes the World based on the information coming from
external sources and information generated by the processing of onboard
sensor inputs.

— Coordination Manager
is the module that, analyzing the current World state and the other agents
coordination information, chooses the agent specific goal in order to accom-
plish the global task. It also sends the coordination information to other
agents.

— Actions
the basic actions are the atomic operations through which the agent can
modify the world state. The ADK model basic actions set corresponds to
the Control System of the layered model.

Notice that the layered model presented in Figure 2, that is designed for
single-agent systems, is not fully reflected in Figure 4, which deals with a multi
agent framework. In particular, here we simply refer to the plan execution com-
ponent at the deliberative level, while the operational level is not included for
simplicity. Nonetheless, some of the Information Fusion tasks that are handled
by the Information Integrator module may be accomplished with numeric repre-
sentations that are used in the operative level of the architecture. Consequently,
although this is not explicitely represented the layered architecture Figure 2, is
actually assumed here.

Below, we provide a more detailed description of the Plan Executor, Informa-
tion Integrator and Coordination Manager modules, because they are of general
interest in agent design. We leave apart the action description because they are
strongly related to the particular application domain.

2.1 Plan Executor

As mentioned in 1.2 a plan is defined as a transition graph that, if successfully
executed, allows our agent to reach the goal. Below we describe first the repre-
sentation of plans, then the plan execution module, while its implementation is
addressed in the next section.

A remark concerning the overall approach to planning is in order. In the
definition of our system architecture we have chosen to generate a library of
plans to be used in typical off-line situations. Therefore, during the mission,
the agent has a library of plans and can select the one that is adequate for the
situation at hand. Notice that off-line generation in our framework is not a severe
limitation, since the use of sensing actions allows for deriving general plans that
are specialized during their executions according to the actual sensing of some
properties. In principle, it is possible to generate universal plans that guarantee
to reach a goal whatever is the initial state, by sensing all that is needed to know
during plan execution. Here we adopt an intermediate solution, where specific
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plans are designed off-line and may be specific to some initial conditions. Plans,
however may include sensing actions, whose result is determined only at run
time by acquiring information on the situation at hand.

Plan Representation A plan is represented as a transition graph, where each
node denotes a state, and is labeled with the properties that characterize the
state, and each arc denotes a state transition and is labeled with the action that
causes the transition. A state represents a situation the system can be in and is
characterized by a set of properties which give a (complete) description of the
situation. However, the plan may include only a subset of the properties that
are needed in order to accomplish the transitions in the graph.

Actions are represented using preconditions and effects. Preconditions are the
conditions that are necessary for activating the action and indicate what must
be true before the action is executed: they specify circumstances under which
it is possible to execute an action. Effects are the conditions that must hold
after the execution of the action and characterize how the state changes after
the execution of the action: they specify direct effects of an action if executed
under given circumstances. A description indicating the overall behaviour of the
action is associated with each action, and is only concerned with the execution
of the action in that particular context.

The actions in the graph can be classified into ordinary (i.e. movement)
actions and sensing actions. The former cause changes in the environment, while
the latter permit the acquisition of information, in order to let the robot take
better decisions. Both actions are relevant to state transition. Sensing actions
are goal-directed behaviours used to verify the value of a property in the world.
Sensing actions are therefore associated with conditions to be verified: depending
upon the condition which is true, a different part of the plan is executed. The plan
can also include parallel execution of primitive actions when their preconditions
and effects do not conflict, i.e. do not generate inconsistencies.

In the formal framework that we have adopted, a number of assumptions
are made both to limit the complexity of the language and to enable for au-
tomatic reasoning. Consequently, for an effective execution of plans, additional
information concerning the verification of preconditions and effects is needed.
In particular, both the duration of actions and the failures of action execution
must be taken into account.

Both preconditions and effects can be interpreted in different ways by the
plan executor. Some preconditions must be constantly verified during the entire
execution of the action, while others need to be checked only for the action
activation. In the first case, the action is carried out as long as the condition
is true. If the condition becomes false during the execution of the action, an
exception occurs and the action fails. This means that there is no state transition
depending on that action execution.

Similarly, some effects determine the action termination and the state tran-
sition, while others are side effects of the action but do not cause the state
transition.
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Following the considerations above, the plan must be marked with additional
information, that is not in the plan generated according to the specification, but
necessary to the monitor for interpreting and executing the plan. In particular,
the monitor has to know which preconditions have to be verified during the
entire execution of the action and which effects determine the state transition.

Based on the above observation, we can now introduce an Ezecutable Plan.
Given a set of ordinary actions A = {a;}, and a set of sensing actions C' = {¢;},
a plan is an ordered graph G =< V, E > where V = {Sinit, Sgoal, S1, ... , Sn} set
of vertex made by plan states, and E = {< s;,s; >} set of edges meaning the
action set that can perform the transition from the state s; to the state s;.

For convenience, in the case of concurrent (primitive) actions, each edge
is labeled with a set of actions, which represents the parallel execution of the
actions. Moreover, to denote the conditions that may cause the termination of
actions, or the failure, we introduce a new type of edge, called trigger. Trigger
edges correspond to terminating conditions for an action, or action failure. In
the first case, the subsequent state is the state resulting from the effects of
the action and corresponds to the destination state of the action edge. In the
second case, a failure state may not be explicitly represented if the plan can
successfully continue from some other state already present in the plan. When
it is not possible to resume the execution from a state within the plan, the plan
execution fails and a new plan must be selected.

Extinct

Ipossibile

[0]

Fig. 5. Example of Executable Plan
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Plan Execution The Plan Executor is in charge of the correct execution of the
actions composing the plans. Its task is that of visiting the graph, calling and
suspending the actions as necessary.

More specifically, the Plan Executor takes as input a set of plans contained in
the Plan Library, possibly some initial conditions that are verified in the current
situation, and a goal, which is provided by the Coordination Manager. The Plan
Executor selects the plan for achieving the goal for reaching the given goal.

Then the plan is executed, by initially activating the actions originating in
the initial state and then by performing the following steps:

1. Check action termination. If action terminates, a new state is reached and
the action starting in the new state are activated. Termination is verified by
taking into account also the trigger edges.

2. If a failure state is reached, the plan is aborted and a new plan must be
selected.

3. It the goal is changed then the plan is aborted and a new plan must be
selected.

2.2 Information Integrator

It is very often the case that an agent is equipped with a large variety of sensors
and/or sensing capabilities, each one providing different information. The task
of the sensor fusion process is to calculate the new state of the world starting
from the previous states and the current sensor information. Moreover, in a
typical scenario we consider a set of communicating and coordinating agents.
Each of them has its local sensors and receives (through communication) the local
information percepted by the others; in this case, the information communicated
by the other agents have to be taken into account in reconstructing the new state,
because other agents may send information about world parts that are hidden
to the agent or that can be used to correct or refine agent’s sensing errors. Once
information about the world state is received, an agent can choose to update
its internal state, or to discard part/all of the incoming information depending
upon the situation, and to the estimated reliability of the sender. Summarizing,
the Information Integrator process should do both sensor fusion and high level
information fusion.

To solve the information fusion problem, a lot of tecniques and algorithms
have been proposed, depending on the specific domain of the fusion and on the
abstraction level of the information being integrated. At the lower level, we find
the fusion algorithms that work using the onboard sensors as input, extracting
features or even more complex information from a set of sensor readings. Prob-
lems as localization or obstacle detection belong to this category. At a higher
level, we find the processes that take care of integrating high level information
coming from external sources, in order to achieve a wider environment knowl-
edge, that is called high level fusion or situation assessment information fusion
[18]. Although it is possible to integrate in our agent structure also a sensor
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fusion capability, in the following we mainly deal with high-level information
fusion.

Several issues could arise at this level, for instance some of the transmitting
agents may be not operational, or may send incorrect information. The infor-
mation integrator has to detect such situations, and make use of all the received
information to reconstruct a correct view of the environment and thus improve
the decision making process.

We propose the information integration model described in Figure 6.

20(self) World |

Estl mation
a —— " Sensor Confllct Conflict ) World
2| Memory Detectl on Resolution or

o Reliability
Estimation

Fig. 6. Sensor Integration Schema

At each time step the Information Reports coming from the different sources
are collected in the Sensor Memory. There are three main sources of information
that can write in the sensor memory:

— the on board sensing processes
— other agents, via network
— the world estimation module

In the Sensor Memory all the reports are collected, without considering pos-
sible conflicts. At each step a Conflict Detector Module analyzes the Sensor
Memory and finds out the possible conflicts. Then the Conflict Resolver tries to
assess the current situation, by using the Reliability Estimator, that takes care
of evaluating the reliability of the information sources, and the current world
estimation. The World Estimator, given the domain dependent evolution laws,
projects the current state into a suitable future one, that will also be considered
by Conflict Resolver at the next step.

2.3 Coordination Manager

The Coordination Manager has the fundamental goal of allowing the agents to
share information about their intentions in such a way to avoid possible conflicts
in the execution of the tasks and to cooperate in the achievement of global goals.
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In our framework, we have distinguished two kinds of agents: a first group
(called operative agents) that are responsible for the actual operation in the
environment, a second one (called coordinator agents) that collect data from
all the agents, perform the process of information fusion and are able to take
decisions about the action to be performed by the other agents. Moreover, the
coordination agents may interact among each other in order to define a global
strategy for solving a given problem.

There are thus two kinds of coordination messages that are exchanged by
the agents: 1) requests, that are sent from a coordinator agent to a group of
operative agents assigning them a goal to be achieved; 2) intentions, that are
exchanged among the members of a group of agents working for the same global
goal or among the coordinator agents in order to coordinate their activities for
accomplishing the assigned task.

Therefore in a general complex application of Multi-Agent System, it is possi-
ble to devise a scenario in which there are several groups of agents with different
operative capabilities in the environment that are coordinated by a coordina-
tion agent and a set of virtual communication networks allowing for message
exchanging among these agents.

An example of such a network topology is given in Figure 7, which shows
two groups of operative agents, with the corresponding communication networks,
and two coordinator agents that can communicate with their operative agents
as well as among each other.

coordination network

agent network

Fig. 7. Communication architecture for a complex MAS

3 ADK Implementation

In this section we discuss in more detail the behaviour of some modules provided
by the ADK, with the goal of providing some detail about the implementation
and the actual definition of agents that are not dependent on the operating
domain. Then, we present a general procedure for designing agents.
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3.1 World

World is the data structure that contains the knowledge about the external
world, owned by an agent at a given instant of time. World allows for an easy
retrieval of the contained information. Although the World description is struc-
tured according to the specific domain, here we consider it as a World Object
container. Each World Object instance models a specific Object belonging to
the real world and resulting from the information integration process.

A World Object is the base item contained in the world. It is constituted by a
set of Properties, each of them uniquely identified in the containing World Object
by a Property Key. A Property can be an Object, allowing for a hierarchical
world representation. For each Property we want to know the last source(s) that
updates its value and the time the property was updated.

As an example of World Object example, consider a building that has a set of
attributes like the number of floors, the first floor plant and so on...; each simple
attribute (like the number of floors) is modeled by a property, the complex ones
(like the plant) are modeled by objects.

World objects should be exchanged between agents. Therefore, they must
exhibit the following properties: introspection, serializability and uniqueness.

The serialization mechanism allows different agents to uniformly represent
their world knowledge. Self-description (introspection) allows a remote agent to
interpret any object structure. Uniqueness is defined with respect to the con-
tainer: an object has to be uniquely addressed through its Object Identifier in
the container object, within all the same-level objects. Therefore, the path from
the object root uniquely identifies each object component.

Figure 8 presents a tree representation of a complex object. Observe that
object identifiers are unique within their container, that is the parent object in
the tree view.

Objectl

Propertyl Property2

/\ br 1 lpr Pr%perty4
operty operty
Propertyl Property2 Property2

Propértyl Property2

Fig. 8. Instance of a complex World Object
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3.2 Plan generator

The representation of plans is done by exploiting an objetc-oriented approach.
This has several advantages from the implementation standpoind, being mod-
ular, extensible, readable and reusable. In particular, by defining each plan as
an object of the pemPlan type, which is also a class derived from pemAction, a
plan can be viewed as a primitive action at a higher level of abstraction. This
definition allows plans and actions to be treated in the same manner, combining
them in plans of higher hierarchical order [33]. In a higher level plan, external
conditions determine the next plan to be activated. This feature also allows for
a great flexibility in the design of plans, although from a theoretical standpoint
the “safe” parallel execution of parallel plan would require a deeper analysis of
the intermediate effects caused by the execution of each plan, with respect to
the execution of the other plan. However, from a practical pont of view, such
interactions are handled by the execution mechanism, which can identify the
possible plan failure.

The plan can be designed through the help of a graphical tool that is de-
scribed in Section [7].

The Plan Executor is essentially made by two components which correspond
to the plan selection and to the stepwise execution as described in Section 2.1.
The only technical issue arises from the management of the hierarchical structure
of plans that must be correctly handled by the execution in order to guarantee
the proper termination/activation of actions.

3.3 Information Integrator

The Information Integrator modules that, given the description of the World
in Section 3.1 in term of Objects and Properties, are not dependent on the
context are the Sensor Memory and the Conflict Detector, that are discussed
in the following. A simple implementation of the Conflict Resolver that uses an
algorithm based only on the general object features is also given.

Sensor Memory The basic input for the information fusion process is the re-
port. A report is an atomic observation of the environment. If the subject (the
one who performs the observation), the object (the world fragment interested
by the observation) of the observation, and the time at which the observation
occurs are known, then we can uniquely address the value of such an observa-
tion. Since we can uniquely identify an atomic property ! of a world object,
simply by chaining the ObjectIds from the root to the leaf of the tree world
representation, then we can uniquely identify a report by a key in the form
(ObjectId*, Justification, Time); where ObjectId* means the Object Id chain
from the root to the leaf; Justification means the source of the observation and
Time means the source of such an information.

! An atomic property is a property that does not contain inner properties. Referring
to the tree representation of an object, the atomic properties are the leaves.



19

Since some stages of our fusion processes require the use of the reports at
the previous times, then we collect them in a structure: the Sensor Memory. The
Sensor Memory is an associative container that allows to fetch a report given its
key.

Conflict Detector We define a conflict as a situation in which at the same
time the same property is asserted by different sources with different values;
formally, a conflict on property p at time ¢ holds if 3 p,t,51,j2 A o(p,t,j1) #
o(p,t,j2) where j; and j» can be two different sources and o(-) is the property
value. Thus we can extract the conflicts that arise in a particular sensor memory
configuration simply by looking at each set of reports belonging to the same time
and referring to the same property. By partitioning the above set in classes that
have the same value, we classify the report sources on the basis of the property
value they asserted.

The Conflict Detector is the module that performs such an operation. It

analyzes the Sensor Memory and extracts a set of ordered reports, in the form
of

{0 ) = {(v, N)}}

where v denotes a property value and J denotes the set of sources that at

time t asserted the property p to have the value v. A conflict arises on (p,t)
if [{{v, )} > 1.

Conflict Resolver The Conflict Resolver is the module that takes care of
updating the World in a consistent way, actualy, it adopts a particular policy
to solve the conflicts detected in the previous stage. In doing that, a lookup in
the Sensor Memory and an estimation of the Sources Reliability may be needed.
More complex policies can be easily defined, see [7].

Currently, only one simple policy is implemented: if a conflict arises, the win-
ner value is the one detected by the agent itself through onboard devices. If such
a value does not exist, the property value belonging to the greater justification
set J is chosen.

3.4 Coordination manager

The implementation of the coordination manager is divided in two modules:
the first is a communication layer that allows the agents to exchange messages
among them, the second is the dynamic task assignment performed by a group
of agents sharing the same goal.

The communication facilities needed for these two modules are based on
broadcast communication and on a publish/subscribe mechanism such that every
agent receives only those messages that are useful for accomplishing its task (i.e.
coordination messages and messages from the other members of its group).

The coordination protocol implemented for dynamic task assignment is based
on the computation of utility functions, that denote the ability of every agent
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to perform a task and that are computed by every agent periodically during
the mission, based on its current knowledge about the world. The values of the
utility functions are exchanged among the agents in order to assign specific tasks
to the agents that are in the better condition to accomplish them. The details
of this distributed coordination protocol have been described also in [5].

3.5 Designing an agent
The agent design is structured according to the following steps:

1. plan design
(a) definition of plan structure
(b) ordinary actions definition
(c) sensing actions definition
2. information fusion definition
(a) conflict resolution policy definition
(b) reliability estimation policy definition
(c¢) transmission policy definition
(d) update reception policy definition
3. coordination handler definition

Plan Design The first stage in the agent design is to characterize its behaviour
by defining a plan. In this context, we focus on plan design by means of a
graphical tool. However, through the formal approach discussed in Section 1.2,
the plan could be automatically generated from an axiomatization of the actions
that can be accomplished by an agent (see [23,14]).

Plan design is supported by a tool called Plan Assistant, that is part of the
ADK. The Plan Assistant provides a GUI for drawing plan graphs; moreover, it
performs some executability check before saving the drawn plans. It is possible
to label each edge with an action, that can be either a primitive action or the
name of a plan previously defined.

As already mentioned, the edges are used to represent both sets of actions,
to be executed concurrently, and triggers, that are used to handle action termi-
nation and switch to the next state.

An additional distinction is made among the ordinary actions that are exe-
cuted in parallel. Some of them are considered auziliary, since their termination
does not influence the termination of the set of actions concurrently executed.

After defining the structure of the plan(s), primitive actions must be defined.
Primitive actions can be of two kinds: ordinary actions and sensing actions. A
primitive action is a process that can be:

initialized

terminated

checked for its execution status
executed
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Each of such functionalities has to be handled by proper code. A difference
from a sensing action and an ordinary one is that the execution of a sensing
action is expected to return a value about the world property being checked.

In addition, for each action preconditions and effects should be specified,
together with the execution annotations (as explained in 2.1), although they are
currently handled by the code associated with the primitive actions.

Information Fusion Strategy As previously said ADK implements an infor-
mation fusion module. Here we sketch the steps for developing an information
fusion module, operating in a general scenario.

In order to define a fusion strategy the following tasks have to be faced:

— To define a conflict resolution policy, that means to define how to handle
the case of two or more groups of sources asserting at the same time that a
property of the same object has different values.

— To define what kind of information a source has to transmit. The main
problem in this stage is the trade-off between accuracy in reconstruction
and communication load, accordingly with the system specifications.

— To define a strategy for assigning a reliability value to the sources, on the
basis of the owned knowledge.

— To define a World Estimation module. Such a module has the role of for-
ward propagate the agent knowledge on the basis of the current one, avoid-
ing/filtering wrong updates in the state.

Coordination The definition of coordination capabilities is based on the def-
inition of the communication capabilities of the agent, which are specified by
defining the type of the agent.

In the ADK, the coordination module has the task to determine the agent
specific goal. When a centralized approach to coordination is chosen, the co-
ordinator agent must be equipped with the procedure for task assignment and
resource allocation, while the operative agent simply executes the goal as re-
ceived by the coordinator agent.

When a distributed approach to coordination is chosen, the agent must de-
termine the goal based on:

— an estimation of the world
— the intentions of the other robots

Such information are communicated through the network according to the group
structure.

Specifically, the method we adopt for distributed coordination requires the
definition of a utility funcion for each task that can be performed by an agent
(see [5]). Such a function provides an estimation of how effectively the agent can
accomplish the task.
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4 Conclusion

In this document we have addressed the design of systems of Cognitive agents,
characterized by being situated in a partially known, dynamic, unpredicatable
environment. In particular, under the assumption that agent can communicate,
we have considered the problem of situation assessment, which involves both
information fusion and cooperation among the agents.

In addition, we have described the functionalities of a tool to support the de-
sign of agents with the above mentioned capabilities, called Agent Development
Kit. This tool allows the multi agent system designer to specify the behavior of
an agent by defining the plans that allow the agents for the execution of its task,
its information fusion strategies, as well as its capability to cooperate with other
agents.

The ADK has been fully implemented, and its practical application in the
rescue domain is in progress (under the “Project Real-time planning and moni-
toring for search and rescue operations in large-scale disasters” funded by Italian
National Research Council). Some preliminary results are also reported in [7].
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Abstract - The goal of the project, which is currently
under development, is to design tools to monitor the
situation after a large-scale disaster, with a particular
focus on the task on situation assessment and high-level
information fusion, as well as on the issues that arise in
coordinating the agent actions based on the acquired
information. The development environment is based on
the RoboCup-Rescue simulator: a simulation environment
used for the RoboCup-Rescue competition, allowing for
the design of both agents operating in the scenario and
simulators for modeling various aspects of the situation
including the graphical interface to monitor the disaster
site. Our project is focussed on three aspects: modeling in
the simulator a scenario devised from the analysis of a
real case study; an extension of the simulator enabling
for the experimentation of various communication and
information fusion schemes; a framework for developing
agents that are capable of constructing a global view of
the situation and of distributing specific information to
other agents in order to drive their actions.

Keywords: disaster simulation, multi-agent systems,
information acquisition, situation assessment, information
fusion, planning.

1 Introduction

Search and rescue of victims in large-scale disasters are
not only highly relevant social problems, but pose several
challenges from a scientific standpoint. When earthquakes,
eruptions or floods happen, a considerable organizational
capability to aid the disaster victims as fast as possible is
required. However, too often different secondary
disasters, connected with the main one, occur, which avoid
the correct execution of a rescue plan a priori decided. For
example, as reported for the Kobe earthquake (1997) [12],
after the earthquake, fires arose between the debris of the
destroyed wooden houses, communication infrastructures
and transportation systems were largely damaged, causing
additional difficulties for the aids.
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The goal of the present project is to develop software
tools to support the management of this kind of
emergency, more specifically to design a support system
for search and rescue operations in large-scale disasters,
both for prevision and training as well as for operative
actions. Even though there are significant results on the
design of robots to support search and rescue [14], here
we are specifically concerned with the design of a
software tool to support both the situation assessment and
the planning/control of operations; moreover, we are
interested in the deployment of the techniques for
achieving cooperation in a multi-agent system [18].

In this context, the RoboCup initiative, the
organization which, starting from 1997, arranged the
world championship for soccer player robots [9], proposed
a new scientific challenge named RoboCup-Rescue [10,
11, 19], where the problems faced are those of bringing
aids in a large disaster. The RoboCup objective is to
create system based on Al and Robotics technologies,
where heterogeneous agents (software, robots, human
beings) interact in a cooperative manner. In particular, we
are concerned with the possibility of deploying and
extending the RoboCup-Rescue Simulator [17], a
simulation system whose main feature is the ability to deal
simultaneously with many events, thus allowing for the
study of different rescue strategies with agents,
autonomous or not, and to facilitate the development
decision support systems working in real-time.

There are several technical issues that arise in order
to pursue the design of a tool like the RoboCup-Rescue
simulator: event modeling and simulation, integration and
visualization of data, resource management, planning and
scheduling, execution monitoring. We are specifically
interested in the problems arising in the interaction of a
large number of heterogeneous agents [18], i.e. the
members of a rescue team. Another relevant research
aspect, strictly related to the previous one, is concerned
with the coordination of the agents themselves, while they
are trying to achieve a common goal [3, 6]. In particular,



we address the problem of situation assessment
(information fusion) in the disaster scenario, within a
multi-agent system.

In order to ground our project in a real scenario we
have chosen to access the data of the Umbria and Marche
earthquake (1997) and to consider the structures and
strategies currently adopted by the Italian VVF (Fire-
Dept) [5]. This, not only provides us with a significant
body of expertise on rescue operations, but also gives us
the opportunity to set up a prototype experimental setting
to show the results of the project. The specific elements of
the domain under consideration, as well as the relevant
features of the RoboCup-Rescue simulator are described
in Section 2.

In a complex domain, such as the one of search and
rescue operation the agents must show both perception and
fusion capabilities as far as the acquisition of information
about the operation scenario is concerned; in addition,
agents should be able to act reactively as well as to plan
and execute complex actions, dealing with failures and
continuous changes in the environment. In order to
identify the functionalities to be provided to the agents for
situation assessment, we have done an extensive survey of
the literature on information fusion, specifically looking at
the application of multi-agent approaches. The outcomes
of this work are summarized in Section 3.

In order to provide the above mentioned capabilities
the agent must rely on hybrid achitecture that is both
heterogeneous (dealing with different representations of
information) and asyncronous (to effectively integrate
reactivity and planning) [8]. In Section 4 we describe an
agent model and the Agent Development Kit (ADK) that
we are developing to support the modeling and
implementation of agents embodying the features required
for the search and rescue simulation.

We conclude the paper by making some
considerations on the exploitation of the proposed
approach within Italian VVF and on the research problems
that are currently under investigation.

2 The RoboCup-Rescue Simulator:
an application to the earthquake of
Umbria and Marche

The RoboCup-Rescue Project started in 1999 with the
goal of developing a comprehensive urban disaster
simulator (see [4]). It aims at producing a software
environment useful for both testing intervention strategies
in a virtual world and supporting decisions in case of real
disasters such as earthquakes or big fires. Below we sketch
the overall structure of the simulator to provide some
indications on the components that need to be developed
in order to apply the simulator to a specific disaster
scenario. For a detailed description of the simulator see
[17].

The RoboCup-Rescue Simulator has a distributed
architecture, formed by several modules, each of them
being a separate process running in a workstation on a
network. The following are the main components of the
simulator:

e Geographic Information System - The GIS module
holds the state of the simulated world. Before
simulation begins, it is initialized by the user in order
to reflect the state of the simulated area at a given
time, then it is automatically updated at each
simulation cycle by the kernel module.

e Kernel - This module is connected to any other
module. At each step it collects the action requests of
the agents and the output of the simulators, merging
them in a consistent way. Then, the kernel updates the
static objects in the GIS and sends the world update to
all the connected modules.

e Simulators - Fire-simulator, Collapse-simulator,
Traffic-simulator, etc. are modules connected to the
Kernel, each one simulating a particular disaster
feature (fire, collapses, traffic, etc.). At the beginning
of every simulation cycle, they receive from the
kernel the state of the world, then they send back to
the kernel the pool of GIS objects modified by the
simulated feature (for example, a pool of burned or
collapsed buildings, obstructed roads, etc.)

e Agents - Agent modules are connected to the kernel
and represent “intelligent” entities in the real world,
such as civilians, police agents, fire agents, etc. They
can do some basic actions, such as extinguishing a
fire, freeing obstructions from roads, talking with
other agents, etc. Agents can also represent non-
human entities: for example they can simulate a
police-office, a fire station, an ambulance-center, etc.

e Viewers - Their task is to get the state of the world,
communicating with the Kernel module, and
graphically displaying it, allowing the user to easily
follow the simulation progress.

In order to use the RoboCup-Rescue simulator in the
context of the present project several issues must be taken
into account. The first issue we have addressed is the
choice of the domain that should be based both on the
availability of data and on suitability of the RoboCup-
Rescue simulators in modeling such an area. It is beyond
the scope of the present project to design specific disaster
simulators. After the domain has been identified the
representation of the information concerning the disaster
scenario to be used in the simulation must be constructed.
Then, the features of the agents need to be analyzed to
verify whether they are suitable for the modeling of the
scenario. While the domain and its representation are



described in the rest of this section, subsequentely we
consider architectures and agent systems for information
fusion, before addressing the design of agents in the search
and rescue scenario.

2.1 The earthquake of Umbria and Marche

Throughout the fall of 1997, a serious earthquake affected
the italian regions of Marche and Umbria: many housing
estates as well asimportant artistic and religious
monuments were heavily damaged, first and foremost the
world-famous Basilica of S. Francesco in Assisi. In order
to experiment and verify techniques and methodologies
developed in our work, we have selected Foligno, one of
the most important cities in that region, as an interesting
scenario for running a disaster simulation; below we
discuss the features of the chosen site and describe the
main aspects of its representation within the simulator. In
order to build such a representation we have developed a
graphical editor that, starting from a bitmap of the site,
supports the input of the description.

2.2 Domain features

Foligno is located in a flat region of eastern Umbria. Its
urban structure is characterized by a medieval center
surrounded by more recent suburbs; in particular we are
fixing our attention on an area of about 1 km? in the city
center.

In the area under consideration there are no high-rise
buildings; most recent structures are mid-rise, in the four-
to nine-story range. All large, multi-story buildings were
constructed of reinforced concrete. Oldest buildings were
mainly constructed of rubble-work, whereas only few
structures are steel frame buildings or wood buildings.
There are no industrial structures; most buildings are
housing estates having variously-shaped plants. The road
network is quite irregular, with not very large roads and
narrow alleys. The following paragraph describes the
model we adopted to represent this domain in the
simulated world. The following paragraph describes the
model we adopted to represent this domain in the
simulated world.

2.3  World model

The world model we adopted is derived from the
RoboCup-Rescue simulator model; it is somewhat
minimal, but it could be easily extended to fit real
scenarios more closely. It deals with three main entities or
object classes: buildings, roads and nodes, respectively.
The road network is described by a graph having one or
more edges for each road and one node for each crossroad
and for each junction between adjacent edges constituting
aroad. Also, a node can represent a linkage point (access-
point) between a building and a road. Each object class

(building, road, node) is characterized by a number of
attributes describing a specific instance of the class. The
following paragraphs show the features of each class.

2.3.1 Buildings

Building objects represent every kind of building on the
map: houses, police offices, hospitals, fire stations,
ambulance centers, refugees, etc. As a result of a
earthquake shock, a building can collapse and obstruct a
road; moreover, a building can catch fire more or less
likely, according to its constituent material; for example, a
concrete building is less flammable than a wooden one.
Further, buildings can have one or more floors and one or
more linkage points with the surrounding roads. The main
attributes of buildings are: Plant, Kind, Material,
Fieryness, Brokenness, Floors, Entrances.

2.3.2 Roads

Road objects are the edges of the road network graph; they
represent every street, lane, tunnel, bridge, etc. in the map.
A road can be partially or totally obstructed by rubble in
consequence of the collapsing of an adjacent building.
Further, a road has one or more traffic lanes on each side
and can have a sidewalk or not. The most relevant road
attributes:  Kind, Length, Width, Block, Repair-Cost,
Lines-to-head/Lines-to-tail, Sidewalk-width.

2.3.3 Nodes

Nodes represent crossroads or linkage points between
buildings and roads. Moreover, a whole road can be split
into two or more adjacent edges, connected to other nodes.
The following are the most important attributes of this
class: Roads, Signal, Signal-timing.

3 Architectures and Agents for
Information Fusion

Information fusion is broadly used in various application
fields such as defense, geoscience, robotics, health,
industry and many techniques have been developed for the
fusion process (see for example [7, 20]). Moreover, the
degree of abstraction of information (raw data, features, or
symbols) that is used in the fusion process is an important
design element to take into consideration in the
development of an information fusion system. In this work
we are mainly interested in the definition of the system
architecture that is required for implementing a system of
robotic agents acting in a rescue domain like the one
described in the previous section.

The design and development of system architectures
is a central issue in the design of a fusion system. All the



architectures proposed in the literature may be grouped in
three categories:

e Centralized
e Hierarchical
«  Distributed

The centralized approach to the development of
fusion architectures is the most popular in the literature
due to the fact that centralized fusion can be characterized
as a well defined problem. Data collected from all the
sensors are processed in a single central unit that performs
the fusion task. This approach is optimal when there are
no communication problems (bandwidth, noise) and the
central unit has enough computational resources to
perform fusion among data. Most fusion algorithms have
been developed for the centralized fusion architecture, and
many applications have been realized using this approach.

However, in recent years distributed and hierarchical
approaches are becoming more popular, thanks to the the
spreading of communication technology. Hierarchical
fusion architectures are based on different layers of nodes:
at the lowest layer, fusion nodes collect data from sensors
to perform a first fusion process on these data, then they
send their results to a higher layer of fusion nodes. Each of
the higher layer nodes collects the results of fusion from
lower layers and perform a different fusion process among
them. The overall architecture can be seen like a tree
where each node is a fusion node and the leaves of the tree
are the sensors. For example, in [15] a hierarchical
architectures is presented for the design of a monitoring
system for a power plant. The architecture is made of two
layers of fusion, a first fusion is performed among a subset
of sensors, then fusion results are send to the central
monitoring system that fuses the results of the sensor
subsets. This design allows to send to the central monitor
more reliable and smaller data, resulting in an increase in
the performance of the whole monitoring system.

Finally, distributed architectures differ from
hierarchical ones in the topology of the fusion nodes. Also
in this case each node performs locally a fusion process
and send the results to other fusion nodes. However, in
distributed architectures there are no hierarchical layers,
but every fusion node can communicate with each other.
The connections are thus arbitrary and the overall
architecture can be represented as a graph of fusion nodes.
A distributed approach to information fusion is very
frequent in agent base systems, see for example [13, 16],
that are presented in the next section.

As compared with the centralized ones, distributed
and hierarchical architectures have the following
advantages:

e Lighter processing load at each fusion node, due to
the distribution over multiple nodes.

e Lower communication load, due to the reduction
amount of data to be communicated.

*  Faster user access to fusion results, due to reduced
communication delay.

On the other hand, using distributed or hierarchical
architecture requires the development of fusion algorithms
that are specialized for those architectures.

In the rescue context, centralized approaches are not
suitable, since the hypotheses of perfectly reliable and
low-cost communication among the nodes (that in our case
are agents acting in the rescue scenario) is not verified. In
fact, during rescue operations often communication among
the agents is very difficult, noisy, and with low bandwidth
and thus a centralized approaches would easily lead to a
complete stall of the operations of the agents.

On the other hand, using distributed or hierarchical
approaches leads towards the use of multi-agent based
approaches to perform the fusion and these approaches are
seen best suited for the rescue domain.

Before defining our proposal for the design and
development of cognitive agents for rescue operations, we
have studied many multi-agent systems for information
fusion that can be found in the literature. We report in the
next section some of them, highlighting the features that
may be of interest in our application domain.

3.1 Multi-Agent approaches to Information
Fusion

In the last ten years, the multi-agent technology has
became a very important research topic and many
researchers in the information fusion field started
exploring the possibilities to develop information fusion
systems by making use of multi-agent systems. In the
following we analyze different works which exploit the
agent technology for the information fusion problem.

An important part of the multi-agent system
techniques applied to the information fusion problem is
the gathering and selection of information obtained as a
consequence of a query, for instance to an Internet search
engine. Even if the process of fusion is more related to the
symbolic level, and thus it is not strictly a sensor fusion
problem, this kind of works cover a large portion of the
efforts of the information fusion research. The issues
which arise while executing queries is to gather relevant
heterogeneous results in a coherent manner avoiding their
overlapping, and to deal with information sources which
are not homogeneous in sharing a common ontology. The



work of Zhang and Zhang [21] is one example of this kind
of study: the authors present an agent based information
fusion system which is used to collect results of the same
query from different resources, and to address the decision
fusion problem which arise when many agents make
different decisions starting from the same information
depending on their own knowledge base. The interaction
between decisional agents and information retrieval agents
described in this work is an interesting issue that we need
to integrate in an architecture in the rescue domain, since
also in this scenario there are agents that collect
information about the status of the world, namely people
in the disaster area, and agents that make decisions based
on information available.

Aside this class of works, the multi-agent techniques
has been applied to multi sensor system to fuse both raw
sensor data and feature data. In [13] Knoll and Meinkoehn
proposed an agent system architecture to realize a
distributed sensor network. They started by analyzing the
benefits which a well suited multi-agent system could
bring to the development of a distributed sensor network
by reducing the amount of data transferred among the
sensors and a central fusion unit, and letting the sensor
network be easy to expand. The solution they propose is a
fully distributed sensor-agent network where every
element has the capability to exchange data only with
those network nodes which can really contribute to
increase the global knowledge by providing useful data.
This kind of distributed sensor networks may be useful in
rescue domains when it is possible to exploit information
of sensors in the environments (e.g. temperature sensors
for detecting fires, video cameras for acquiring
information about collapsed building or road traffic, etc.)
and it is required to integrate this data with higher level
information coming from people.

The work of Anderson [1] is focused on a smart use
of a distributed sensor network by making use of a multi-
agent system. It analyzes the advantages that agents can
introduce in the Baltic Watch project framework. The goal
of this project is to develop a monitoring structure which
can increase the security condition within the Baltic Sea.
Also in this work there is an important element to be
considered for rescue operations that is the choice of the
best communication topology among the agents. In fact, in
a rescue scenario, due to the general difficulty in
communicating with other agents, it is very important to
define communication infrastructures and to ensure that
each agent can communicate only with those agents that
are able to effectively process and interpret the message.

Finally, the work of Regis et al. [16] is based on the
same view of agent which extends a sensor. Their
research investigates how a distributed real-time control
system can be realized by making use of agents which
control distributed sensors and execute the fusion process.

They developed agents which have the capability to
schedule the different tasks they needed to achieve their
goal under soft real-time constraints. The importance of
this work in rescue application is the introduction of the
autonomy of each agent. In fact, every agent acting in a
rescue domain must act in collaboration, but
autonomously with respect to the others, in other words
even if communications are not available for a period of
time the agent must continue his work.

We have specifically considered all these works in
order to define the system architecture for our fusion
system in the rescue domain that is presented in the next
section.

4 Agent design

In this section we propose an agent architecture that is
suitable for the modeling of agents with the features
required in a search and rescue scenario. Moreover, we
define the components of a framework that allows for an
easy and structured implementation of agents operating in
real-time.

4.1 Agent model

The literature on agent approaches to information fusion
shows that agents can be seen both as system components
that allows for a modular software approach to system
design and modeling concepts. We follow the latter
approach thus identifying our system agents with the
entities that act in the scenario.

The overall structure of the agent should satisfy the
needs for information acquisition as well as the support for
intelligent action. In Figure 1 we describe the functional
model of the agent.

We sketch the main function accomplished by each
process (represented as an oval in Figure 1).

World and World Management - The world is the
structure that represents the whole agent knowledge about
the world. In order to grant consistency it can only be
modified by the World Manager, that implements different
update policies. For instance, in the rescue domain the
world is composed by the rescue world objects such as
roads, agents, buildings, etc., plus some information about
the agents state.

At each instant the world contains the result of the
fusion of the information received since the starting time,
and, hence, it contains the knowledge for decision making.

Plan Executor (PE) - A plan may be seen as a graph that
specifies the actions to reach a goal. Each node is a state,
edges specifies the state transitions caused by action
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Figure 1 : Functional Agent Description

execution. The Plan Executor performs two tasks:

» It receives from the coordination handler the goal to
reach and peeks from the plan library the plan to
achieve it.

e It executes a plan by starting or stopping primitive
actions at each state, finding which edge to follow in
case of a condition branch.

A plan switch can occur after the recognition of a plan
failure and/or a goal switch may be forced by the
coordination module.

Sensing Integrator - In general, an agent can be equipped
with a large variety of sensors and/or sensing capabilities,
each one providing different type of input. The task of the
sensor integrator is to calculate the new state of the world
starting from the previous states and the current sensor
info. At present, in the RoboCup-Rescue simulator, agents
have limited sensing capabilities, modeling vision and
hearing, and not requiring the application of sophisticated
integration techniques.

Coordination Handler - In the multi-agent system the
communication capability plays a fundamental role.
Basically two kinds of information have to be handled:

* information about the sensed world

* information about the action coordination

The information exchanged by the agents about their
perception of the world serve as input for the information
fusion process. As already noted information can be
represented by features or more generally and by symbolic
representations. The information concerning the actions
coordination is used to decide the agent specific goal,
allowing the agent system to accomplish the overall goal
of agent team.

As argued in the previous section information fusion
can be accomplished at several degrees of abstraction and
therefore the agent architecture must be heterogeneous in
that it should handle different representations. In
particular, we aim at combining fusion of raw sensor data
(although in the simulator perception is currently not
considered at this degree) as well as features and symbols.
As shown in Figure 1, through the communication channel
agents can exchange information about the world as
perceived, and therefore regarded as additional sources of
information that must be considered in order to update the
representation of the world. In addition, the types of
agents range from the operation center to the individual
agent, possibly organized in several independent
structures. This makes it necessary to provide centralized
fusion capabilities as well as hierarchical and fully
distributed ones.

In this respect, the proposals that have been
presented in the previous section are generally focussed on
one specific type of representation, as on a specific
architecture, and therefore are not directly applicable in
our scenario. To provide the required flexibility, the
heterogeneous and asynchronous architecture proposed in
[8] for the design of a single agent is adopted to
implement a multi-agent system with the capabilities of a
distributed organization for fusion and of the integration
of information at different degrees of abstraction.

In fact, in this architecure heterogeneity allows for
taking into account different level of representation of
information acquired by the agents and asynchronicity
allows for integrating planning capabilities and fusion
processes in a dynamic environment.

4.2 ADK for Robocup Rescue

The Robocup Rescue environment provides a tool (the
Rescue ADK [2]) that simplifies the agent construction.
Howewer, at present, the above sketched agent model
cannot be directly defined on top of the ADK. Therefore,
we are designing an extension of the ADK that is suitable
for our purposes, by implementing the modules discussed
above within our asyncronous architecture.



Moreover, we are concerned with the communication
capabilities of the agents. In particular, we are interested
in experimenting with communication infra-structures that
cannot be directly modeled in the setting supported by the
ADK. For example, one cannot specify that a set of
agents is linked through a broadcast communication
channel.

As specified by the ADK, agents have their own
representation of the state (memory), but it does not allow
to maintain multiple or uncertain representations of data,
which are possibly needed to handle the fusion of data
coming through the communication with other agents, and
are required by our heterogeneous architecure.

Finally, we are implementing a mechanism for
visualizing not only the global scenario, but also each
agent view of the world in order to evaluate the process of
situation assessment within the multi-agent system.

5 Conclusions

We have presented the current development of the
ongoing project “Monitoring and Information Fusion for
Search and Rescue Operations in Large-scale Disasters”.
The aim of the research is to develop a tool to support
search and rescue operations in large scale disasters. In
particular, we are deploying the RoboCup Rescue
Simulator, which has been developed to provide an
environment  for  experimentation of  multi-agent
technology in the framework of the RoboCup initiative.
We have addressed a specific application domain: the
disaster scenario recorded after the earthquake of Umbria
and Marche. Moreover, we have focussed on the problem
of situation assessment and discussed the features of some
approaches to information fusion based on multi-agent
approaches, that are related to the present project. Finally,
we have sketched the agent model that we are developing
in order to design the various types of agents.

The availability of the RoboCup-Rescue simulator
has been extremely valuable for the development of the
present project, providing an experimental setting that can
be effectively used for developing a prototype
implementation. The simulation can serve both to evaluate
various strategies for information acquisition and situation
assessment, as well as to make it more understandable to
the VVF personnel the potential benefits of an integrated
approach to the simulation and monitoring of a real search
and rescue scenario. While it is premature to consider the
effectiveness of the tool in the management of operation,
both the analysis of past scenarios as well as the training
of personnel seem to be already suitable for application.
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Abstract. Due to the improvement of research in the autonomous agent
field, it is becoming possible to simulate complex or critical activities,
such as rescue operations in areas where large disasters occurred. The
RoboCup Rescue Project aims to study the rescue issue under many dif-
ferent points of view (resource allocation, study of efficient procedures to
coordinate the available involved rescue operators, etc.). To accomplish
our goal, we have realized a framework to define a simulation environ-
ment that models the real environment, and within which the software
agents can operate, based on the RoboCup Rescue Simulator [Com00].
In this document we first describe the main features of the RoboCup
Rescue Simulator and then the installation done at our Lab.

1 Objectives

While developing the simulator the following objectives were
considered:

— to describe an environment in terms of a generic map,
composed of the most common urban elements:

e building
e roads

Some geometrical and logistic properties are associated to each one of these
elements,
in order to model the reality with enough
accuracy.

— to simulate different kinds of disasters, by
supplying the possibility to develop simulation components in a
modular manner, that is, in a way independent of the rest of the
framework.

— to model agents which interact with the
environment in an ad-hoc manner, and to supply a standard
communication interface within the entire structure.



2 TImplementation issues

To realize the framework described in the previous section it, is
necessary to adopt a distributed model as a consequence of the
high computational costs required by the process.

The system is divided in many components each of which can be executed
on a different host. A reliable datagram communication

protocol, based on UDP, has been adopted. At every simulation frame, only

the state changes are sent, so that the network traffic is reduced.

3 System structure

The simulation is realized in the discrete time system framework, where the
state evolution in a certain instant is calculated on the basis of the state in the
preceding instant, and of the inputs (represented by the agents/action).

The sequence of actions forming a simulation frame is the following:

— State representation

— Catastrophic event simulation
— Simulation results integration
— Inter-module communication

— State information transmission

module |features

GIS state representation
simulation result
kernel ‘integration,
inter-module
communication
misc sim

traffic sim simulates
block sim |crowd, traffic
fire sim |fire, collapses
collapse sim

civilian, police,

agents ambulance, fire brigade




simulator n

simulator2
GIS kernel
simulatorl
agent m
agent 2
agent 1

4 Execution

The system is based on a discrete time model. The information related to the
state that is exchanged by the modules, is focused on objects, each of which
is identified by an id attribute, and a certain amount of other properties. The
object updating process implies only the retransmission of those properties that
changed with respect to the preceding instant.

4.1 Initialization

The data transmission technique adopted involves the necessity to maintain a
copy of each module state, for this reason there is an initial phase where every
module receives the state representation. The following steps are involved:

1. the environment state is loaded by the GIS from binary files

2. the kernel connects to GIS to obtain the entire state representation

3. the simulator connect to the kernel to receive the entire state representation
4. the agents connect to the kernel to receive a partial state representation

simulator n
simulator2

WC WC

GIS kernel .
simulatorl
T l ke
no_de. _bi n agent m
bui | di ng. bin agent 2 we :initial configuration
road. bin

L kc knowable information
agent




4.2 System behavior

Once the state has been reconstructed by the agents, the simulation proceeds in
an interactive manner.

isr
= simulator n
=5 simulator2
GIS kernel _
<ig simulatorl
_—
gc
s l TC s sensorial input
¢ commands
agent m gc simulator related commands
agent 2 s simulator step results
isr integrated simulation results
agent 1

The sequence of actions executed in a generic step is:

1. the kernel sends the sensor information to the agents

2. every agent sends the action it intends to execute to a specific simulator via
the kernel

3. the kernel sends the agents commands to the simulators

4. every simulator calculates the next state, then it sends the results to the
kernel

5. the kernel integrate the received results, updates the GIS and increases the
simulation time

Simulators While integrating information, it is assumed that whether a sim-
ulator changes a property, it is the only one allowed to. thus, the integration is
simply obtained by merging the partial results received by the different simula-
tors. Each simulator’s result is integrated in the simulation instant sequent to
the one in which it has been transmitted.

5 Installation

5.1 Set up
System Requirements:

— At least 192 MB of RAM.

— At least a linux 2.2.14 kernel
— Al least gcc-2.91.66

— jdk-1.3

What to do:



— unpack the rescue-sim.tgz archive in your home
# tar -xzvf rescue-sim.tgz
this step will add a directory named rescue-sim

— change directory to rescue-sim
# cd rescue sim

— build the sources
# make

The last step may take a very long time. If the compiler throws an internal error
it is possible the system runned out of memory. The problem may be solved by
killing some system service and restarting the build stage.

5.2 Running

To start a sample session of the simulator on the local machine just type
# ./all-sh
within the RUN directory.

The Rescue System is made up by the GIS !, the kernel, a set of disaster
simulators, the civilians and your agents. Each module is an independent process
communicating with the others through the network. For this reason, if a large
set of calculators is available, it is possible to spread the simulation over there,
simply spreading the processes.

By installing a non interactive remote shell program, such as rsh, it is pos-
sibile to write a simple shell script that starts the processes in a distribuited
way. Obviously the processes have to be informed on which machine the Res-
cue Kernel 2 is running; this can be done by setting some parameters on the
command line. Since those parameters are undocumented we provide a short
reminder extracted from the sources.

Parameters:

! Geographic Information System.
2 The process that handles communication.



module parameters
gis (-file ConfigFile )
kernel (-file ConfigFile)((-nogis)—(GISHost))
miscsimulator (-file ConfigFile)(KernelHost)
collapsesimulator (file ConfigFile)(KernelHost)
firesimulator (file ConfigFile)(KernelHost)
collapsesimulator (-file ConfigFile)(KernelHost)
blockadessimulator|  (-file ConfigFile)(BlockParam)(KernelHost)
trafficsimulator (-file ConfigFile)(BlockParam)(KernelHost)
samplecivilian (-file ConfigFile)(KernelHost)
Civilianl (-f ConfigFile)(-h KernelHost)(-n NumberOfAgents)
Civilian2 (-f ConfigFile)(-h KernelHost)(-n NumberOfAgents)
Civilian3 (-f ConfigFile)(-h KernelHost)(-n NumberOfAgents)

Sample batch file for distribuited execution:

#! /bin/sh
#here we assume to spread the simulation over three hosts

DISPLAY=$1

./0_rgis.sh $DISPLAY&

sleep 5

./1_rkernel.sh $DISPLAY $HOSTNAMEE
sleep 5.

./kuwataviewer.sh -1 300 -h $HOSTNAME&

#set the remote host path
CD=/home/rescue/src/rescue-sim/RUN

#starts the simulator pool on host myril02

rsh myri102 $CD/3_rmiscsimulator.sh $DISPLAY $HOSTNAME&

rsh myril02 $CD/4_rtrafficsimulator $DISPLAY $HOSTNAME&

rsh myril02 $CD/5_rfiresimulator.sh $DISPLAY $HOSTNAME&

rsh myril02 $CD/6_rblockadessimulator.sh $DISPLAY $HOSTNAMEL
rsh myril02 $CD/7_rcollapsesimulator.sh $DISPLAY $HOSTNAME&
sleep 5

#starts agents on host myril02
rsh myril03 $CD/rCiviliani.sh $DISPLAY -h $HOSTNAME&
rsh myri103 $CD/rCivilian2.sh $DISPLAY -h $HOSTNAME&

sleep 5
# replace YabAI with your agents!
xterm -e ./YabAI.sh myril01&
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Abstract. The problem of information fusion can be faced at different
levels within the software architecture of a complex system. In the last
twenty years information fusion has thus been interpreted by treating
information in different ways: information as raw data, as objects features
or as high level and complex structures.

In this paper we present a summary of the work on information fusion.
We start by characterizing the notion. We then look at application do-
mains, before focusing on the level at which information fusion takes
place. We then address the architectures for information fusion, in par-
ticular agent-based approaches. We conclude by briefly addressing the
task of information fusion in the rescue domain.

1 Information Fusion Characterization

During the last twenty years different meanings have been assigned to the word-
ing “information fusion” (also referred to as “data fusion”), and all those related
to them, depending on the diversity of the application domains to which the ef-
forts of the corresponding researches were directed. In January 1998 a definition
was adopted [Wald 99] which resumed the conclusions of an European working
group, set up by the European Association of Remote Sensing Laboratories and
the French Society for Electricity and Electronics (affiliate of the IEEE), con-
cerning the specification of a lexicon of term of reference. We will adopt that
terminology in this work, after having briefly explained and recalled the charac-
terization of information fusion according to the following:

“Data fusion is a formal framework in which are expressed means and tools
for the alliance of data originating from different sources. It aims at obtaining
information of greater quality; the exact definition of ‘greater quality’ will depend
upon the application.”

Within this definition many terms like data fusion, information fusion, sensor
fusion, classifier fusion are included, which means that information fusion can be
done on many different types of data ranging, from raw measures to linguistic
descriptions. Moreover, it is claimed that the architectures and the mathematical
tools needed to execute the information fusion are part of the process and they



are not the process itself. Finally, the link between quality and application field
underlines that data fusion has to improve the value of the information obtained,
because it satisfies more useful for the specific application which makes use of
it, and not because it respects some strict predefined quality definition.

In this paper an overview of what information fusion is, when and how it
has been applied and which are the directions it is heading to, will be presented,
always referring to the above written definition.

2 Information Fusion Applications

Information fusion is broadly used in various application fields such as :

— Defense

— Geoscience
— Robotics
— Health

— Industry

The aim of this section is to present some recent works, concerning informa-
tion fusion for each of the listed application fields, giving an intuition of how
information fusion is becoming a very important and interesting research field.

2.1 Defense

Historically defense is the first field of application for information fusion. Lots of
military application s involve the use of information fusion, such as aerial targets
detection[5,41, 49] identification[15] and tracking [3]

[23,72], in [77] integration of a multi-source data fusion is performed for pur-
pose of target tracking and identification with the existing Naval Command and
Control for the HALIFAX frigates For purpouse of mine detection, information
fusion from different kind of sensors (infrared camera, metal detector) is very
effective and improves the probability of success[31]. In [28] a system using an
innovative ground penetrating radar is used to recognize buried mines. Fusion
is made among different data extracted from the GPR sensor; experiments are
made on data collected on the battle field, a comparision is made between the
results obtained using a primary algorithm and the result obtained performing
the fusion: fusion actualy improves the performance of the overall system. In-
formation fusion is also used in vehicle automatic detection [11,40], battlefield
surveillance, tactical situation assessment and object detection[1]. Finally, infor-
mation fusion is also used to improve person authentication techniques, based
on biometric measures (voice, face and profile images)[7,12].

2.2 Geoscience

Geoscience concerns the earth study using satellite or aerial images [68, 88]. Fu-
sion is used in Geoscience to detect areas of interest (rivers, mountains, airports,



roads) merging images from different sources, or from different dates [51]. The
main problem to achieve this goal is the classification and interpretations of im-
ages [38, 79]. In [46] merging of satellite images is used to improve the recognition
process for planimetric features like roads energy transmission lines railroads or
rivers. In [71] information fusion is performed with different aerial radar images
to improve recognition of terrain areas. In [47] Map containing edge extracted
from various source images (optical, infrared) are fused in order to obtain a com-
bined edge map that has more reliable and more complete edge information. The
combined map is then used to perform object recognition starting from the edge
information. Results are presented starting from images coming from satellite.
Another application of information fusion in Geoscience is the construction of a
finer resolution image merging images of the same scene [10, 16,18, 32].

2.3 Robotics

In Robotics information fusion is used for different purposes. Basically the prob-
lems to solve in this field of application are:

— Environment identification.
— Navigation and localization.

In [81], sensor fusion among different robot perception is used to improve the
accuracy in estimating the position and tracking an object in the environment.
The reported experiment show that the fusion process reduces the error on the
object position. in others works fusion is used to improve the detection of out-
door environments as [61] where a robot is used to detect metal object hidden
in the terrain. For navigation purpose information fusion is used in [85]. The
navigation of an autonomous vehicle is approached using electrostatic potential
fields and sensor fusion with fuzzy logic, information fusion is used to avoid
obstacles. Experimental result on real show that the integration between fuzzy
logic and electrostatic potential field results in shorter and safer paths respect to
the use of the same techniques without fusion. Other works that use information
fusion for navigation purposes are [30,60, 63, 36,42]. Lots of works approach the
localization problem fusing information extracted from the envirnment and the
information coming from odometry using a Kalman filter. In [84] the localization
task of a mobile robot is solved fusing information from GPS and odometry (the
robot is used as a guide in a campus). In [37] odometry is fused using the Kalman
filter with the enviroment features extracted from an onboard camera. In the ex-
periments, results obtained from the localization process with and without the
fusion are compared, showing that fusion actualy improves the localization pre-
cision. Another work that uses information fusion for real-time localization is
[9]- Fusion is also used to achieve temporal coherence between data in dynamic
environments [39, 59].

2.4 Health

Health here is to be intended not only as human, but also in a more generic way
as the well functioning of a system. In [52] techniques to improve aircraft engine



health are presented; a probabilistic approach to the fusion of data coming from
multiple sources is used to improve the diagnostic and prognostic capabilities of
a software system. In [74] information fusion is used to obtain a robust predic-
tion detection system, the goal is to optimize the fusion system to have safer
predictions and detections to achieve this different techniques of information
fusion (such as Dempter-Shafter theory, Bayesian inference, fuzzy logic, neural
network and simple weighting/voting) ) are considered. Experiment results show
the effectiveness of the fusion process.

In medical applications, information fusion is used for different tasks. In [20]
information fusion is used for achieving outer wall detection of esophagus, from
ultrasound images. Experimental results show that information fusion improve
the outer wall esophagus detection. Other works where fusion is used for the
modelization of the human body are [14,62] In medicine information fusion is
also used for tumor detection [78], using radiographic and ultrasonic images,
classification of different tissue [62], bacterial recognition [89].

2.5 Industry

In the industry application information fusion is used to have a better control of
the production quality. For example in [82] information coming from an electronic
tongue and nose is fused to control the food quality. Information fusion is also
useful for the automatization of production processes. In [50] sensor fusion is used
to achieve a better object recognition. The use of fusion improves the correct
identification of the objects and reduces the missing detection: in the article
the percentage of object correct, false and missing recognition are reported.
Information fusion is also used for automatic tool breakage detection [64], train
localization or vehicle passage detection [83].

3 Fusion Techniques

Techniques used to perform information fusion are various and quite complex.
It is possible to divide those techniques in four main categories [87]:

Probability Theory

Evidence Theory

Fuzzy Set and Possibility Theories
Neural Networks

The use of a specific technique in an application is due to many consideration
such as:

— The level at which the fusion is performed. (signal, feature, symbol: see the
next section)

— The constraint the application has to face (real time, off line)

— The architecture used to implement the application (centralized, distributed
see Section 6)



— The kind (noisy, uncertain, etc) and amount of data the application needs
to fuse

In this section we briefly discuss the difference between the techniques showing
some example for each of them

3.1 Probability theory

Historically, probability theory is the first technique used to perform data fusion.
Input data are modelled with probability or likelihood numbers, then data are
merged using well known mathematical tools such as Bayesian rules or specific
rules for the application at hand. In [81] an approach based on gaussian prob-
ability distribution is used to represent, fuse and communicate observations of
an object by multiple robots. An ad hoc fusion technique is proposed to cope
with gaussian distribution in a simpler and more efficient way. An example of
information fusion performed using Bayesian rules can be found in [50], where
fusion between multisensors is made for the recognition of object in an industrial
environment using a Bayesian network. The different observations should not be
considered independent in order to have better performance. Other works that
use Bayesian methods are [7, 15,38, 41]. The main drawback of the Bayesian ap-
proach is the identification of the a-priori probability distributions, moreover,
to simplify computation, in most cases information sources are considered as
independent: such an hypotesis is very restrictive in some cases.

Another well-known mathematical tool used to perform the fusion is the Kalman
filter. The Kalman filter is based on the bayes’ rule and provides a recursive es-
timation of the observed characteristics, starting from the previous observations
and the known object characteristics. A large number of works uses this ap-
proach to perform object tracking [22] or to solve the localization problem in
robotics applications[37,81].

3.2 Evidence theory

Evidence theory is basically an extension of probability theory. Evidence the-
ory is based on the initialization of basic belief assignment to the data sources;
the belief assignments are merged togheter using rules, for example Dempster-
Shafter rule. Allowing the handling of non-exclusive and non singleton events,
Evidence theory is a powerfull tool in classification problems, where managing
uncertainty is a main problem. For example in [75] the Dempster-Shafter the-
ory is integrated with a geometrically inspired measurement of uncertainty, to
fuse information from different kind of classifiers in a classification process, im-
proving the reliability of the whole process. In [70] Dempster-Shafter theory is
used to fuse multisensor data in monitoring system of power plant. As in prob-
ability theory the main problem for evidence theory is the initialization of the
basic belief assignment. Efforts have been made to overcome this problem: in
[63], a method for modelling the knowledge required for the initialization of the
belief functions is presented. Experimental results are reported using real data,



extracted from images of dermatological lesions. [54] presents a new approach
to detemine automatically the mass function of the Dempster-Shafter theory.
Another group of works propose the use of evidence theory togheter with fuzzy
theory in the fusion process [21,20].

3.3 Fuzzy Set and Possibility Theories

Fuzzy set theory is based on partial membership of element to sets. Membership
functions describe the rate of membership of an element to a set, they are a very
powerful interface between numerical and symbolic representations [91]. Fuzzy
theory is also used to fuse numeric data, several defined operators allows for a
very broad set of behaviors in the fusion of data. As example in [60] fuzzy logic
is used both to fuse data from different regions of the same image, and to fuse
signals from different sensors.

Another important aspect of fuzzy theory is the representation of uncertainty
which is pursued by possibility theory. Possibility theory is proposed to deal
with unprecise statement and to combine unprecise informations [9]. In [48]
Fuzzy inference is used to manage uncertainty in the reasoning process.

3.4 Neural Networks

Neural Networks consist of layers of processing elements, that may be intercon-
nected in various ways. Neural Networks are mostly used when the relationship
between input and output data is unknown, because they can be trained on
sets of data to obtain the desired behaviors [29,49,64,86]. During the training
process the neural network changes dynamically the function between input and
output data, until the error on the training data sets is considered acceptable.
Recently neural network have been used in the fusion process; for example in [82]
a neural network approach is used to fuse information coming from an electronic
tongue and nose, for food industry application. In [8] a Neuro-Fuzzy technique is
adopted in classification of remote multisource sensing, and geographical data.
The Neuro-Fuzzy approach results from the integration of fuzzy inference, neural
network pattern recognition and derivative-free optimization techniques based
on genetic algorithms. Neural networks and statistical approaches are normally
considered as alternative techniques for data fusion; in [4] a study is reported to
see whether the two approaches can be combined to have better performance.

4 Fusion Levels

The design and architecture of a fusion system is a very important and discussed
issue in the literature concerning information fusion. The main concept of this
issue is the level of fusion. Basically data can be fused at three levels (see [34]):

— Signal level
— Feature level



— Symbol level

Dasarathy in [19] spreads the levels of fusion into five. The five levels of fusion
results from the input-output combination of the above three levels (Data input-
Data output, Data input-Feature output, Feature input-Feature output Feature
input-Decision output, Decision input-Decision output). The spreading of the
levels according to Dasarathy leads toward a more flexible design of the fusion
system architecture.

The choice of fusing data at a certain level is strictly related to the purpose and
characteristics of data fusion and strongly influences the techniques adopted for
the fusion. When the fusion is made at symbol level, the objects to be combined
are a logical representation of data; therefore to fuse data at the symbol level in
most cases logical operators are used. When the fusion is made at signal level,
data are directly extracted from the sensors and no intermediate representation
is given; the techniques used to fuse this kind of data are taken from signal the-
ory. Same techniques, such as neural networks and fuzzy theory, can be used with
very different data representations. Several efforts have been done to approach
the problem of information fusion focusing on the level of fusion [19, 34, 68, 88],
[25] presents a methodology for examining the interface between aircraft sys-
tem/subsystem elements of a Prognostic and Health Management system. The
methodology described perform the integration of different level of information
fusion (Data, Feature, Information) in a coherent architecture. In the following,
we represent an overview of the litterature on fusion, classifying the different
approaches according to the level where fusion is performed.

4.1 Fusion at Signal Level

At the signal level, the fusion is made on data directly taken from sensors (see
for example) [5,18,51]. At this level, no intermediate representation of data is
used, the techniques commonly used are taken from signal theory and depend
strictly from the kind of sensor. In some works, signal level fusion is used as part
of a larger framework, data are aggregated at signal level, then the aggregated
data are further fused at higher level (feature or symbolic) [50, 20].

4.2 Fusion at Feature Level

In the feature level data are extracted from sensors, and an internal represen-
tation is built for the fusion [14,39]. We classify under the feature level those
approaches that rely on a feature based internal representation that is specifically
designed for the fusion purpose. The kind of feature chosen is strictly connected
to the technique chosen for the fusion. Using the Dempster-Shafter approach to
perform the fusion, an internal representation is needed in order to obtain the
basic belief assignment (see previous section)

[63,92,21,70]. In most cases the feature extraction is needed in order to avoid
noisy data coming from the sensor’s measurement. In the feature level fusion,
techniques such as neural network [6], fuzzy rule [82] or a combination of them



[21] are very frequently used because these techniques are very flexible and can
perform fusion obtaining good performance on several kinds of data representa-
tions. Other works use stochastic based fusion method working on ad hoc feature
extracted from sensor data; in such cases, the feature to represent data is chosen
in order to achieve some advantages in the fusion process. In [81], for example,
the gaussian ditribution of object in the space is represented trough the param-
eter characterizing the function, in order to require less computation efforts in
the fusion process.

4.3 Fusion at Symbol Level

At the symbol level, data are represented with logical constructs

[41,78]. In [45] the fusion is performed using operators between theories and
models. Following this approach, coherence between data can be obtained, thus
avoiding data inconsistency. The symbol level is the higher level of abstraction,
hence the logical representation of data has to be extracted from sensor data
through rather complex data processing: in [44], an architecture to perform a
multisensor data fusion is presented. Other works that perform fusion at the
symbolic level are [41, 78].

5 Fusion Architectures

Fusion architecture is becoming a very important issue in the design of a fusion
system. The fusion architectures can be divided in:

— centralized
— hierarchical
— distributed

The centralized approach is the most popular in the literature due to the fact that
centralized fusion can be characterized as a well defined problem. In recent year
the distributed or hierarchical approaches are becoming more popular, thanks
to the the spreading of communication technology.

5.1 Centralized

The centralized approach is the simplest one. Data collected from all the sensors
are processed in a central unit that is the only one to perform the fusion;the
results of the fusion process are send to the various users. This approach is
optimal when there are no communication problems (bandwidth, noise) and the
central unit has enough computational resources to perform the fusion among
all data. Most fusion algorithms have been developed for the centralized fusion
architecture, and many applications have been developed using this approach.



5.2 Hierarchical

Hierachical fusion architectures are based on different layers of fusion nodes.
At the lowest layer, fusion nodes collect data from sensors to perform a first
layer fusion among those data, then send their fusion results to a higher layer of
fusion nodes. Each of the higher layer fusion nodes collects the results of fusion
from lower layers and perform a second layer fusion among them. The overall
architecture can be seen like a tree where each node is a fusion node and the
leaves of the tree are the sensors. In [70] a hierarchical architectures is presented
for the design of a monitoring system for a power plant. The architecture is
made of two layers of fusion, a first fusion is performed among a subset of
sensors, then fusion results are send to the central monitoring system that fuses
the results of all the sensors subset. This design allows to send to the central
monitor more reliability and smaller data, resulting in increased performance of
the whole monitoring system. In [2] and [17] a hierarchical approach is used in
a multiagent base system: such works are presented in the next section.

5.3 Distributed

Distributed fusion architecture is similar to the hierachical one. Is based on fu-
sion nodes that perform locally the fusion process among the sensors, and send
to other fusion nodes the fusion results. The difference is that there are no layers
in these architectures, and every fusion node can communicate with each other.
The connections are arbitrary, the overall architecture can be represented by a
graph where every node is a fusion node and every edge represents a connection
between the nodes. A distributed approach to information fusion is very frequent
in agent base systems, see for example [43, 73], those approaches are presented
in the next section.

As compared to the centralized ones, distributed and hierarchical architec-
tures have the following advantages:

— Lighter processing load at each fusion node, due to the distribuition over
multiple nodes.

— Lower communication load, due to the reduction amount of data to be com-
municated

— Faster user access to fusion results, due to reduced communication delay

On the other side, using distributed or hierarchical approaches one has to develop
fusion algorithms that are specialized for those architectures. In [55] a tracking
problem in a distributed and hierarchical architecture is faced. Some algorithms
(JPDA,MHT) used to perform the fusion in tracking problem with centralized
architectures are extended for distributed and hierarchical architectures. Using
the distributed or hierarchical approaches leads towards the use of agentsbased
approaches to perform the fusion. In the next sections we describe the advantages
of using multiagents to perform fusion and present some recent works based on
this approach.
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6 Agents and Fusion

In the last ten years, the multi-agent technology has became a very important
research topic. Agents are often considered by many authors, with respect to the
software design process, as the descendants of the objects: they both encapsulate
a state and rely on the concept of message exchanging. Developing software by
making use of agent techniques is also referred to as Agent Oriented Program-
ming [90]. It is generally agreed that there are some important features an agent
must exhibit [67]. Before introducing the works an agent-based approaches to
information fusion, we briefly summarize these features.

6.1 Agents and architectures

Agents As already mentioned, there is no generally accepted definition of agent.
Many researchers defined agents very precisely, but agent definitions turn out to
be very different [56]. In fact, agent definitions often embody the characteristic of
a specific implementation. [67]. Anyway, most authors agree on a set of attributes
an agent must possess. Among them [65,26,27,57,35,90], the agent is to be
“autonomous”. Autonomy means that the agent has control over its actions and
behaviors, it can act without external interference, both from users and other
agents, and, finally, it can take initiatives to accomplish a given task.

The ability to cooperate with other agents and/or with users, both to achieve
a given goal or to help someone else to accomplish its own task, is another
generally recognized capability an agent has [65, 90, 26].

Two other features which are generally attributed to an agent are: the capa-
bility of learning from other agents, from the environment or even from users [26,
65,90, 80], and the ability to “understand” the environment in which an agent
works, thus acquiring and maintaining its knowledge about it [65, 26, 27,57, 35,
90, 80]. Certainly there are other characteristics which can be used to define an
agent, but it is difficult to identify a common basis: for a detailed discussion of
each of them it is convenient to consult for example [65, 26, 27,57, 35,90, 80, 24].

Agent architectures The way an agent exhibits its autonomy depends on the
fact that it can take decisions in response to some event. These responses are
selected based on the different types of decisional processes which are used to
implement the agent itself. The architecture of an agent characterizes these dif-
ferent processes. Substantially, there are three different architectures, which are
e specially used in characterizing a robotic agent: the reactive one, the deliber-
ative one, also called cognitive [24], and the hybrid architecture. The core of a
deliberative architecture is the sense-plan-act model in which the environmental
modifications are perceived and used to elaborate a plan to keep accomplishing
a given goal. Once a plan, which is a sequence of actions the agent has to carry
out, has been created, or more commonly selected from a set of previously built
plans, the actions the plan itself involves are executed. The reactive architecture
can be thought as the counterpart of the deliberative one, because it relies on
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the principle of action and reaction. In this case a set of reactive behaviors are
included within the agent and as soon as an activating condition of one of these
behaviors is triggered the agent executes it. Usually an agent has more than one
behavior and a mechanism to execute the more relevant to the present situation
is used [24, 58, 66,13].

The hybrid architecture is a combination between the two opposite solutions
which tries to take advantage from both of them, thus it results to be the most
commonly implemented and developed.

6.2 Agent approaches to Information Fusion

In the last years, researchers in the information fusion field started exploring the
possibilities to develop information fusion systems by making use of multi agent
systems; in fact, there is a a strict relation between the sensor fusion problem
domain, in particular in the case of a distributed sensor network, and a multi
agent system domain. In the following we analyze different works which exploit
the agent technology for the information fusion problem, to compensate one or
more of the implicit issues which multi-sensing brings. The problems related
with the possibility to easily expand or upgrade the sensor network; the com-
munication issues which arise because the transmission of sensor data occupies
a large portion of the available bandwidth, thus limiting the sensors’ number,
and because of lack of reliability of the communication itself; the overhead of the
computational resources due to the fusion process of a large amount of gathered
data.

An important part of the multi agent system techniques applied to the infor-
mation fusion problem is the gathering and selection of information obtained as
a consequence of a query, for instance to an internet search engine. Even if the
process of fusion is more related to the symbolic level, and thus it is not strictly
a sensor fusion problem, this kind of works cover a large portion of the efforts of
the information fusion research. The issues which arise while executing queries
is to gather pertinent heterogeneous results in a coherent manner avoiding their
overlapping, and to deal with information sources which are not homogeneous in
sharing a common ontology. The work of Zhang and Zhang [93] is one example
of this kind of study. The authors present an agent based information fusion sys-
tem which is used to collect results of the same query from different resources,
and to address the decision fusion problem which arise when many agents make
different decisions starting from the same information depending on their own
knowledge base. Agent finalized to different tasks are realized (interface agents,
decision making agents, information retrieval agents) and, in particular, informa-
tion fusion agents which make use of the Ordered Weighted Averaging operator
to implement the information fusion engine. Both the decisional agents and in-
formation retrieval agents send the results of the execution of their assigned
tasks to the information fusion agents. All the agents make use of KQML as
their communication language.
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Aside this class of works, the multi agent techniques has been applied to
multi sensor system to fuse both raw sensor data and feature data. In [43] Knoll
and Meinkoehn proposed an agent system architecture to realize a distributed
sensor network.

They started by analyzing the benefits which a well suited multi agent sys-
tem could bring to the development of a distributed sensor network by reducing
the amount of data transferred among the sensors and a central fusion unit, and
letting the sensor network be easy to expand. The solution they propose is a
fully distributed sensor-agent network where every element has the capability
to exchange data only with those network nodes which can really contribute to
the increase of knowledge by providing useful data. The core of their proposal
is a Contract Network Protocol. The protocol allows for recruiting those sen-
sor which satisfy the required data accuracy (semsors can be different among
each others, thus having different reliability and resolution properties) and sat-
isfy both time and space constraints. Subsequently Knoll et al. [76] realized
a sensor-agent development framework called MagiC, which let the previously
proposed architecture be easily realized. They prove the effectiveness of their
solution by experimenting with an image acquisition system composed by four
cameras used to drive a robotic harm in a lab environment. Finally, in [43]
the computer vision problem of object recognition is successfully faced by us-
ing the architecture they propose, realized with the sensor-agent framework they
developed. In this work the information fusion was exploited at the feature level.

The work of Anderson [56] is focused on a smart use of a distributed sen-
sor network by making use of a multi agent system. It analyzes the advantages
that agents can introduce in the Baltic Watch project framework. The goal of
this project is to develop a monitoring structure which can increase the security
condition within the Baltic Sea, by making the different states that are around
it collaborate. One of the main points of the project is to gather information
from all the available sensors (which can be real sensors, ship transponders or
even human operators) which are active in that area to reconstruct, by fusing
these data, an overall picture of the Baltic Sea. Because different sensors are
working together, the author proposed to realize a sensor-agent for each of them
with the capability to decide which of the other sensors should be activated to
keep on monitoring for example ship. In this way, a smaller amount of better
quality data would be generated and a better fusion process could be produced.
Moreover, the researcher identified other kind of agents which could have a very
deep impact over the system efficiency: agents which represent the ships involved
in the scenario. In this manner ship-agents could help the sensor-agent network
to keep a more strict control over the Baltic Sea area by letting it easily follow
their movements.

The work of Regis et al. [73] is based on the same view of agent which ex-
tends a sensor. Their research investigates how a distributed real-time control
system can be realized by making use of agents which control distributed sensors
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and execute the fusion process. They developed agents which have the capabil-
ity to schedule the different tasks they needed to achieve their goal under soft
real-time constraints. Each agent is in charge to select the most appropriate
agent-sensor to collaborate with, depending on its reliability and on the quality
of the information it can provide. The authors faced the problem by dividing
the agent development in two different phases: the first goal was to implement
within the agent, the technologies needed to reason about real-time such as, for
instance, real-time scheduling technique, while the second goal was to optimize
the running time of the adopted technologies. They also experimented the sys-
tem they developed by using as a test bed a target tracking problem. They used
many radar sensor-agents which had to triangulate the position of many mov-
ing targets within the environment. The data exchanging and the identification
of the appropriate sensor to collaborate with, together with other tasks like,
for instance, discovering new targets, had to be completed within one second to
guarantee the validity of the acquired data used in the fusion process. The use of
agents improved the quality of the global task and decrease the communication
overload.

While some researchers have a vision of agents and sensors gathered in a
single unit (we can talk about sensor-agent), others prefer to use the agents as
supervisors of the distributed sensor network, often being in charge to activate
or deactivate a specific sensor due to its characteristics. Ayari and Haton [2] real-
ized a framework to cope with the sensor data fusion problem both at signal and
feature level. They experimented it with one robot which builds and maintains a
map of a structured environment (eventually subject to dynamic modifications)
by making use of its sensors and a multi agent system to drive the entire pro-
cess. The authors made use of two different classes of agents: a perceptual one
and a interpretative one. The first, composed by five specialized subclasses, is
in charge of the raw data analysis and the feature extraction process, while the
second one, which is in turn composed by three different subclasses, has the con-
trol over the maintenance of the environmental model depending on the results
of the perceptual agents computations. This kind of architecture lets the agents
improve the quality of the data acquisition and map building tasks by selecting
the appropriate sensor to activate and the more appropriate task to accomplish.
The entire process makes use of the Contract Network Protocol to enable the
agents interaction, but, as the authors themselves noticed, it suffers from the
broadcast communication model that was adopted to realize it.

In the research work presented by Cozien et al. [17] agents are developed to
work in conjunction with a neural network in a computer vision contest. They
realized a system called Jarod, to recognize military airplane shapes from satel-
lite pictures. Their system was composed by a pool of agents assigned with the
task to extract the airplane shapes from an image. Once they complete their
operations the results are passed to a neural network which is in charge to rec-
ognize the airplane type. The agents implemented are reactive ones, and their
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sensing behavior is driven by different types of gradient algorithms (Sobel, Pre-
witt, Laplace) or by ad hoc agent algorithm (the authors refer to each different
algorithm with the term sensor). The agents have the ability to decide which is
the most appropriate algorithm to use depending on the typology of the image
they have to analyze. Once a shape has been identified it is passed to the neural
network which relates it to an airplane model or, if the information obtained is
not satisfying, it requires the creation of specific agents to refine, with a local
analysis, the portion of image from which the shape has been extracted. The sys-
tem they implemented resulted in a hierarchical one, where the neural network
gathers the information, in this case represented by a set of features, obtained
from the agents, while it is fully distributed in the feature extraction process
(each multi agent system works on a different image running in a different work-
station).

The last work we are going to analyze that concerns the possible use of
multi agent system for information fusion technology, is made by Qi et al. [69].
Their research took a different direction as compared to the others because it
makes use of mobile agents. Mobile agents are agents which can move around a
network and execute locally where they believe their services are needed. To have
a more detailed description of what is the so called Mobile Agent Paradigm, and
which is the actual situation of this specific research field, see [33]. In the system
proposed by the authors, agents incorporate a portion of the fusion engine and
move around a sensor network analyzing the data the sensors produce; after a
while, the agents come back to a main processing entity. The processing entity
fuse all the information gathered by the agents and eventually communicates and
fuse its results with those of other processing entities, present within the sensor
network, to improve the global result quality. The result of this architecture
is a lower workload of the communication structures obtained by reducing the
amount of data transferred along the network. Moreover, the system increases its
reliability with respect to a possible network failure which could avoid the data
transmission, the agent indeed works locally and, as soon as the transmission
are rearranged, it can move to a different node while maintaining all the data
acquired in the meanwhile. The advantage of this system is in the usage of
the computational resources which are involved in the fusion process that are
consumed only when they are required.

7 Information Fusion in the Rescue Domain

Our interest in information fusion arose by analyzing a specific domain which is
the management and planning of rescue operations in large scale disaster, such
as, for instance, an earthquake. In such a situation the efficiency of aids is strictly
dependent on the accuracy of the knowledge on the environment.

The level of information that it is possible to obtain in this context, is strictly
dependent on the source generating the information. In a rescue scenario both
signal level and feature level as well as symbol level information are present.
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Signal level information is made of raw sensor data. Such a data could be camera
images, radar scans, infraread sensor readings and so on. Feature level informa-
tion is the one extracted after some processing of sensor data. Usually this kind
of information is more compact than signal level one, and commonly it is related
to a more complex data structure. Feature level information can be generated
either by human beings or by an automated analysis of source data. An exam-
ple of information at feature level can be the evaluation of a building burning
degree, or the blocking level of a road.

Finally, symbol level is related with logic structured data that are suitable to
perform automatic reasoning and among the three discussed levels is ofthen the
more closely related to human common sense.

Symbol and feature level information are mainly needed within the decisional
process, where the coordination of the rescue team is managed. In this contest
symbolic knowledge is used to better allocate the available resources or to direct
in a more effective manner the execution of a particular task.

Un the rescue domain, the architecture of the team is a very important issue.
The fire departement for example has a hierarchical structure with three different
layers: an operational unit where the main decisions are taken, a local unit which
maintain radio communication with the operational unit and locally coordinate
the work of the fire fighters and, finally, the fire fighters themselves who operate
in the disaster area. Each of this layers executes a specific task and has to acquire
and fuse information to take decisions.

The operational unit supervises the entire rescue operation and makes use
mainly of information at symbolic and feature level. The feature level is built on
the information provided by the local coordination units.

Each kind of unit takes decisions and act on the basis of both the information

coming from lower and upper layers. Moreover each unit propagates its obser-
vations acting as an information source for the upper layer.
For instance, in this model the lowest layer is represented by the single fire fighter
that acts on the basis of sensorially percepted situations and communicates with
the local coordination unit. Overload of communication is avoided by making
use of local fusion procedures to provide the upper level in the hierarchy only
with the information which is relevant to the upper node task.

Information fusion is a central task in the rescue issues and, by analyzing
the structure of a real fire department, it is possible to pinpoint how the in-
formation fusion is executed at different levels, with respect to the information
type, and at different layers, concerning the hierarchical structure of the deci-
sional /operational units. The use of a multi-agent system is, in our opinion, an
obvious choice to realize the above mentioned autonomy in terms of both infor-
mation fusion and task execution.

The RoboCup rescue simulation provides with a dynamically evolving sim-
ulated disaster environment, within which it is possible to implement software
agents to simulate rescue teams. Realizing a proper communication simulator,
enables the performance analysis of several communication infrastructures not
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just in terms of communication bandwidth, including also communication prob-
lems that could arise in the particular domain, but also in terms of the effec-
tiveness. In particular such a communication simulator allows both to represent
the communication structure used by the fire department and to test different
communication schemas.
Morover, in order to develop agents able to perform information fusion at every
level, agents need a powerful comunication layer. For each agent it is also possi-
ble to encapsulate a fusion engine specific for the fusion level it has to deal with
Moreover, even if not considered at the present time, a direct use of sensor data
can be realized by developing sensor-agent which can be added to the system,
thus letting us to investigate how to improve the usage of the signal fusion level.
Due to the autonomy which each agent has to exhibit while executing its
assigned task, we believe that an hybrid architecture agent well fits the issues
involved by rescue scenario. An high level reasoning layer manages the decision
process by making use of both symbolic and feature information, while a reactive
layer manages the reactions involved by unexpected environment modifications.
In our work we will focus on the deliberative aspect of the decisional process,
paying special attention to the feature fusion and symbol fusion level.
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